Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Autoscaling Benchmark Initial #862

Draft
wants to merge 6 commits into
base: main
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions benchmarks/autoscaling/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -43,10 +43,10 @@ For example,
There are two plots that you can plot.

### Generating report
`python <aibrix_root_repo>/benchmarks/plot/plot-everything.py <experiment_home_dir>`
`python plot-everything.py <experiment_home_dir>`

For example,
`python <aibrix_root_repo>/benchmarks/plot/plot-everything.py experiment_results/25min_test`
`python plot-everything.py experiment_results/25min_test`

The directories should look like
```bash
Expand Down
4 changes: 2 additions & 2 deletions benchmarks/autoscaling/deepseek-llm-7b-chat/deploy.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -176,5 +176,5 @@ spec:
- key: machine.cluster.vke.volcengine.com/gpu-name
operator: In
values:
# - NVIDIA-L20
- Tesla-V100
- NVIDIA-L20
# - Tesla-V100
52 changes: 34 additions & 18 deletions benchmarks/autoscaling/plot-everything.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
#!/usr/bin/env python3
import os
import json
import re
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
Expand All @@ -24,10 +25,15 @@ def parse_experiment_output(lines):
continue
try:
data = json.loads(line.strip())
required_fields = ['status_code', 'start_time', 'end_time', 'latency', 'throughput',
# required_fields = ['status_code', 'start_time', 'end_time', 'latency', 'throughput',
# 'prompt_tokens', 'output_tokens', 'total_tokens', 'input', 'output']
required_fields = ['status', 'start_time', 'end_time', 'latency', 'throughput',
'prompt_tokens', 'output_tokens', 'total_tokens', 'input', 'output']
if any(field not in data for field in required_fields):
missingfields = [field not in data for field in required_fields]
print(missingfields)
continue
data['status_code'] = 200
results.append(data)
except json.JSONDecodeError:
continue
Expand All @@ -43,24 +49,34 @@ def parse_experiment_output(lines):
rps_series = df.groupby('second_bucket').size()
df['rps'] = df['second_bucket'].map(rps_series)

success_rps = df[df['status_code'] == 200].groupby('second_bucket').size()
failed_rps = df[df['status_code'] != 200].groupby('second_bucket').size()
success_rps = df[df['status'] == 'success'].groupby('second_bucket').size()
failed_rps = df[df['status'] != 'success'].groupby('second_bucket').size()
df['success_rps'] = df['second_bucket'].map(success_rps).fillna(0)
df['failed_rps'] = df['second_bucket'].map(failed_rps).fillna(0)

return df, base_time

def get_autoscaler_name(output_dir):
def get_autoscaler_name(output_dir, workload_type):
autoscaling = None
with open(f"{output_dir}/output.txt", 'r', encoding='utf-8') as f_:
lines = f_.readlines()
for line in lines:
if "autoscaler" in line:
autoscaling = line.split(":")[-1].strip()
break
print(f"output_dir: {output_dir}")
# Extract the last part of the path after the last slash
filename = output_dir.split("/")[-1]
match = re.search(rf"^[^-]+-{workload_type}-([^-]+(?:-[^-]+)*)-\d{{8}}-\d{{6}}$", filename)

if match:
print(match)
autoscaling = match.group(1)

# with open(f"{output_dir}/output.txt", 'r', encoding='utf-8') as f_:
# lines = f_.readlines()
# for line in lines:
# if "autoscaler" in line:
# autoscaling = line.split(":")[-1].strip()
# break
if autoscaling == None:
print(f"Invalid parsed autoscaling name: {autoscaling}")
assert False
print(autoscaling)
return autoscaling.upper()

def parse_performance_stats(file_content):
Expand Down Expand Up @@ -160,7 +176,7 @@ def analyze_performance(df):
raise Exception(f"Error analyzing performance metrics: {e}")


def plot_combined_visualization(experiment_home_dir):
def plot_combined_visualization(experiment_home_dir, workload_type):
# Create figure
fig = plt.figure(figsize=(12, 12))

Expand Down Expand Up @@ -228,11 +244,10 @@ def plot_combined_visualization(experiment_home_dir):
output_dir = os.path.join(experiment_home_dir, subdir)
if "pod_logs" in output_dir:
continue
autoscaler = get_autoscaler_name(output_dir)
autoscaler = get_autoscaler_name(output_dir, workload_type)
color = colors[autoscaler]
marker = '.'
label_name = f'{autoscaler}'

# Read and parse data
experiment_output_file = os.path.join(output_dir, "output.jsonl")
parsed_lines = read_experiment_file(experiment_output_file)
Expand Down Expand Up @@ -362,7 +377,7 @@ def plot_combined_visualization(experiment_home_dir):
content = read_stats_file(stat_fn)
if content:
stats = parse_performance_stats(content)
autoscaler = get_autoscaler_name(output_dir)
autoscaler = get_autoscaler_name(output_dir, workload_type)
title = f"{autoscaler}"
if autoscaler is None or autoscaler == "none" or autoscaler == "NONE":
color_list.append(colors[autoscaler])
Expand Down Expand Up @@ -400,18 +415,19 @@ def plot_combined_visualization(experiment_home_dir):
plt.tight_layout()

# Save the combined figure
output_path = os.path.join(experiment_home_dir, 'combined_visualization.pdf')
output_path = os.path.join(experiment_home_dir, f'combined_visualization-{workload_type}.pdf')
plt.savefig(output_path, bbox_inches='tight')
print(f"** Saved combined visualization to: {output_path}")
plt.close()

def main():
if len(sys.argv) != 2:
print("Usage: python script.py <experiment_home_dir>")
if len(sys.argv) != 3:
print("Usage: python script.py <experiment_home_dir> <workload_type>")
return 1

experiment_home_dir = sys.argv[1]
plot_combined_visualization(experiment_home_dir)
workload_type = sys.argv[2]
plot_combined_visualization(experiment_home_dir, workload_type)
return 0

if __name__ == "__main__":
Expand Down
6 changes: 0 additions & 6 deletions benchmarks/autoscaling/requirements_bench_pa.txt

This file was deleted.

29 changes: 16 additions & 13 deletions benchmarks/autoscaling/run-test.sh
Original file line number Diff line number Diff line change
Expand Up @@ -2,8 +2,11 @@

input_workload_path=$1
autoscaler=$2
aibrix_repo="" # root dir of aibrix repo
api_key="" # set your api key
aibrix_repo=$3 # root dir of aibrix repo
api_key=$4 # set your api key
kube_context=$5
workload_type=$6

k8s_yaml_dir="deepseek-llm-7b-chat"
target_deployment="deepseek-llm-7b-chat" # "aibrix-model-deepseek-llm-7b-chat"
target_ai_model=deepseek-llm-7b-chat
Expand Down Expand Up @@ -37,7 +40,7 @@ fi

# Setup experiment directory
workload_name=$(echo $input_workload_path | tr '/' '\n' | grep .jsonl | cut -d '.' -f 1)
experiment_result_dir="experiment_results/${workload_name}-${autoscaler}-$(date +%Y%m%d-%H%M%S)"
experiment_result_dir="experiment_results/${workload_type}/${workload_name}-${workload_type}-${autoscaler}-$(date +%Y%m%d-%H%M%S)"
if [ ! -d ${experiment_result_dir} ]; then
echo "output directory does not exist. Create the output directory (${experiment_result_dir})"
mkdir -p ${experiment_result_dir}
Expand Down Expand Up @@ -66,7 +69,7 @@ kubectl delete -f ${k8s_yaml_dir}/deploy.yaml
kubectl apply -f ${k8s_yaml_dir}/deploy.yaml
kubectl apply -f ${k8s_yaml_dir}/${autoscaler}.yaml
echo "kubectl apply -f ${k8s_yaml_dir}/${autoscaler}.yaml"
python3 ${aibrix_repo}/benchmarks/utils/set_num_replicas.py --deployment ${target_deployment} --replicas 1
python3 ${aibrix_repo}/benchmarks/utils/set_num_replicas.py --deployment ${target_deployment} --replicas 1 --context ${kube_context}
echo "Set number of replicas to \"1\". Autoscaling experiment will start from 1 pod"

echo "Restart aibrix-controller-manager deployment"
Expand All @@ -82,9 +85,9 @@ kubectl rollout restart deploy ${target_deployment} -n default
sleep_before_pod_check=20
echo "Sleep for ${sleep_before_pod_check} seconds after restarting deployment"
sleep ${sleep_before_pod_check}
python3 ${aibrix_repo}/benchmarks/utils/check_k8s_is_ready.py ${target_deployment}
python3 ${aibrix_repo}/benchmarks/utils/check_k8s_is_ready.py aibrix-controller-manager
python3 ${aibrix_repo}/benchmarks/utils/check_k8s_is_ready.py aibrix-gateway-plugins
python3 ${aibrix_repo}/benchmarks/utils/check_k8s_is_ready.py ${target_deployment} ${kube_context}
python3 ${aibrix_repo}/benchmarks/utils/check_k8s_is_ready.py aibrix-controller-manager ${kube_context}
python3 ${aibrix_repo}/benchmarks/utils/check_k8s_is_ready.py aibrix-gateway-plugins ${kube_context}

# Start pod log monitoring
pod_log_dir="${experiment_result_dir}/pod_logs"
Expand All @@ -94,7 +97,7 @@ mkdir -p ${pod_log_dir}
cp ${input_workload_path} ${experiment_result_dir}

# Start pod counter. It will run on background until the end of the experiment.
python3 ${aibrix_repo}/benchmarks/utils/count_num_pods.py ${target_deployment} ${experiment_result_dir} &
python3 ${aibrix_repo}/benchmarks/utils/count_num_pods.py ${target_deployment} ${experiment_result_dir} ${kube_context} &
COUNT_NUM_POD_PID=$!
echo "started count_num_pods.py with PID: $COUNT_NUM_POD_PID"

Expand All @@ -105,13 +108,13 @@ python3 ${aibrix_repo}/benchmarks/utils/streaming_pod_log_to_file.py aibrix-gate

# Run experiment!!!
output_jsonl_path=${experiment_result_dir}/output.jsonl
python3 ${aibrix_repo}/benchmarks/generator/client.py \
python3 ${aibrix_repo}/benchmarks/client/client.py \
--workload-path ${input_workload_path} \
--endpoint "localhost:8888" \
--endpoint "http://localhost:8888" \
--model ${target_ai_model} \
--api-key ${api_key} \
--output-dir ${experiment_result_dir} \
--output-file-path ${output_jsonl_path}
--output-file-path ${output_jsonl_path} \
--streaming

echo "Experiment is done. date: $(date)"

Expand All @@ -123,7 +126,7 @@ sleep 1

# Cleanup
kubectl delete podautoscaler --all --all-namespaces
python3 ${aibrix_repo}/benchmarks/utils/set_num_replicas.py --deployment ${target_deployment} --replicas 1
python3 ${aibrix_repo}/benchmarks/utils/set_num_replicas.py --deployment ${target_deployment} --replicas 1 --context ${kube_context}
kubectl delete -f ${k8s_yaml_dir}/deploy.yaml

# Stop monitoring processes
Expand Down
81 changes: 81 additions & 0 deletions benchmarks/autoscaling/run.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,81 @@
#!/bin/bash
set -x

export KUBECONFIG=${KUBECONFIG}
export aibrix_repo=${aibrix_repo}
export api_key=${api_key}
export kube_context=${kube_context}

for WORKLOAD_TYPE in "T_HighSlow_I_HighSlow_O_HighFast" "T_HighSlow_I_HighSlow_O_HighSlow" "T_HighSlow_I_LowFast_O_HighSlow" "T_HighSlow_I_LowSlow_O_HighSlow"
do
workload_path="workload/synthetic_patterns/${WORKLOAD_TYPE}/synthetic_manual_config.jsonl"
if [ -z "${workload_path}" ]; then
echo "workload path is not given"
echo "Usage: $0 <workload_path>"
exit 1
fi

autoscalers="hpa kpa apa optimizer-kpa"
for autoscaler in ${autoscalers}; do
start_time=$(date +%s)
echo "--------------------------------"
echo "started experiment at $(date)"
echo autoscaler: ${autoscaler}
echo workload: ${workload_path}
echo "The stdout/stderr is being logged in output-${autoscaler}-${WORKLOAD_TYPE}.txt"
./run-test.sh ${workload_path} ${autoscaler} ${aibrix_repo} ${api_key} ${kube_context} ${WORKLOAD_TYPE} > output-${autoscaler}-${WORKLOAD_TYPE}.txt 2>&1
end_time=$(date +%s)
echo "Done: Time taken: $((end_time-start_time)) seconds"
echo "--------------------------------"
sleep 10
done
python plot-everything.py experiment_results/${WORKLOAD_TYPE} ${WORKLOAD_TYPE}
done




for WORKLOAD_TYPE in "workload-2024-10-10-19-50-00" "workload-2024-10-15-18-50-00"
do
workload_path="workload/maas/${WORKLOAD_TYPE}/internal.jsonl"
if [ -z "${workload_path}" ]; then
echo "workload path is not given"
echo "Usage: $0 <workload_path>"
exit 1
fi

autoscalers="hpa kpa apa optimizer-kpa"
for autoscaler in ${autoscalers}; do
start_time=$(date +%s)
echo "--------------------------------"
echo "started experiment at $(date)"
echo autoscaler: ${autoscaler}
echo workload: ${workload_path}
echo "The stdout/stderr is being logged in output-${WORKLOAD_TYPE}.txt"
./run-test.sh ${workload_path} ${autoscaler} ${aibrix_repo} ${api_key} ${kube_context} ${WORKLOAD_TYPE} > output-${WORKLOAD_TYPE}.txt 2>&1
end_time=$(date +%s)
echo "Done: Time taken: $((end_time-start_time)) seconds"
echo "--------------------------------"
sleep 10
done
python plot-everything.py experiment_results/${WORKLOAD_TYPE} ${WORKLOAD_TYPE}
done



# target_deployment="deepseek-llm-7b-chat"
# kubectl delete podautoscaler --all --all-namespaces
# python3 ${aibrix_repo}/benchmarks/utils/set_num_replicas.py --deployment ${target_deployment} --replicas 1 --context ${kube_context}
# target_ai_model=deepseek-llm-7b-chat


# mkdir -p output-profile
# for qps in {1..10}
# do
# kubectl -n envoy-gateway-system port-forward service/envoy-aibrix-system-aibrix-eg-903790dc 8888:80 &
# STRATEGY="random"
# WORKLOAD_PATH=workload/constant/qps-${qps}/constant.jsonl
# python3 ${aibrix_repo}/benchmarks/client/client.py --workload-path ${WORKLOAD_PATH} --endpoint "http://localhost:8888" --model ${target_ai_model} --api-key ${api_key} --output-file-path output-profile/output-qps${qps}.jsonl
# # python analyze.py output-profile/output-qps${qps}.jsonl
# sleep 30
# done
Loading