-
-
Notifications
You must be signed in to change notification settings - Fork 5.5k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Model] Add support for GPT-J (#226)
Co-authored-by: woWoosuk Kwon <[email protected]>
- Loading branch information
1 parent
75beba2
commit c894836
Showing
10 changed files
with
269 additions
and
7 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,251 @@ | ||
# coding=utf-8 | ||
# Adapted from | ||
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/gptj/modeling_gptj.py | ||
# Copyright 2023 The vLLM team. | ||
# Copyright 2021 The EleutherAI and HuggingFace Teams. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
"""Inference-only GPT-J model compatible with HuggingFace weights. | ||
The input of the model is flattened to a 1D tensor of tokens. The model uses | ||
InputMetadata to extract the original 2D shape of the input. | ||
""" | ||
from typing import Dict, List, Optional, Tuple | ||
|
||
import torch | ||
from torch import nn | ||
from transformers import GPTJConfig | ||
|
||
from vllm.model_executor.input_metadata import InputMetadata | ||
from vllm.model_executor.layers.activation import get_act_fn | ||
from vllm.model_executor.layers.attention import PagedAttentionWithRoPE | ||
from vllm.model_executor.layers.sampler import Sampler | ||
from vllm.model_executor.weight_utils import (hf_model_weights_iterator, | ||
load_tensor_parallel_weights) | ||
from vllm.model_executor.parallel_utils.parallel_state import ( | ||
get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size) | ||
from vllm.model_executor.parallel_utils.tensor_parallel import ( | ||
VocabParallelEmbedding, ColumnParallelLinear, RowParallelLinear) | ||
from vllm.sequence import SequenceOutputs | ||
|
||
KVCache = Tuple[torch.Tensor, torch.Tensor] | ||
|
||
|
||
class GPTJAttention(nn.Module): | ||
|
||
def __init__(self, config: GPTJConfig): | ||
super().__init__() | ||
self.total_num_heads = config.num_attention_heads | ||
self.hidden_size = config.hidden_size | ||
self.head_size = self.hidden_size // self.total_num_heads | ||
|
||
self.qkv_proj = ColumnParallelLinear(config.hidden_size, | ||
3 * config.hidden_size, | ||
bias=False, | ||
gather_output=False, | ||
perform_initialization=False) | ||
self.out_proj = RowParallelLinear(config.hidden_size, | ||
config.hidden_size, | ||
bias=False, | ||
input_is_parallel=True, | ||
perform_initialization=False) | ||
|
||
tp_world_size = get_tensor_model_parallel_world_size() | ||
assert self.total_num_heads % tp_world_size == 0 | ||
self.num_heads = self.total_num_heads // tp_world_size | ||
|
||
scaling = self.head_size**-0.5 | ||
assert config.rotary | ||
assert config.rotary_dim % 2 == 0 | ||
self.attn = PagedAttentionWithRoPE(self.num_heads, self.head_size, | ||
scaling, config.rotary_dim) | ||
self.warmup = False | ||
|
||
def forward( | ||
self, | ||
position_ids: torch.Tensor, | ||
hidden_states: torch.Tensor, | ||
kv_cache: KVCache, | ||
input_metadata: InputMetadata, | ||
cache_event: Optional[torch.cuda.Event], | ||
) -> torch.Tensor: | ||
qkv, _ = self.qkv_proj(hidden_states) | ||
q, k, v = qkv.chunk(chunks=3, dim=-1) | ||
k_cache, v_cache = kv_cache | ||
attn_output = self.attn(position_ids, q, k, v, k_cache, v_cache, | ||
input_metadata, cache_event) | ||
attn_output, _ = self.out_proj(attn_output) | ||
return attn_output | ||
|
||
|
||
class GPTJMLP(nn.Module): | ||
|
||
def __init__(self, intermediate_size: int, config: GPTJConfig): | ||
super().__init__() | ||
hidden_size = config.n_embd | ||
self.fc_in = ColumnParallelLinear(hidden_size, | ||
intermediate_size, | ||
gather_output=False, | ||
perform_initialization=False) | ||
self.fc_out = RowParallelLinear(intermediate_size, | ||
hidden_size, | ||
input_is_parallel=True, | ||
perform_initialization=False) | ||
self.act = get_act_fn(config.activation_function) | ||
|
||
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | ||
hidden_states, _ = self.fc_in(hidden_states) | ||
hidden_states = self.act(hidden_states) | ||
hidden_states, _ = self.fc_out(hidden_states) | ||
return hidden_states | ||
|
||
|
||
class GPTJBlock(nn.Module): | ||
|
||
def __init__(self, config: GPTJConfig): | ||
super().__init__() | ||
if config.n_inner is None: | ||
inner_dim = 4 * config.n_embd | ||
else: | ||
inner_dim = config.n_inner | ||
self.ln_1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) | ||
self.attn = GPTJAttention(config) | ||
self.mlp = GPTJMLP(inner_dim, config) | ||
|
||
def forward( | ||
self, | ||
position_ids: torch.Tensor, | ||
hidden_states: torch.Tensor, | ||
kv_cache: KVCache, | ||
input_metadata: InputMetadata, | ||
cache_event: Optional[torch.cuda.Event], | ||
) -> torch.Tensor: | ||
residual = hidden_states | ||
hidden_states = self.ln_1(hidden_states) | ||
attn_output = self.attn( | ||
position_ids=position_ids, | ||
hidden_states=hidden_states, | ||
kv_cache=kv_cache, | ||
input_metadata=input_metadata, | ||
cache_event=cache_event, | ||
) | ||
mlp_output = self.mlp(hidden_states) | ||
hidden_states = attn_output + mlp_output + residual | ||
return hidden_states | ||
|
||
|
||
class GPTJModel(nn.Module): | ||
|
||
def __init__(self, config: GPTJConfig): | ||
super().__init__() | ||
self.config = config | ||
self.embed_dim = config.n_embd | ||
self.wte = VocabParallelEmbedding(config.vocab_size, | ||
self.embed_dim, | ||
perform_initialization=False) | ||
self.h = nn.ModuleList( | ||
[GPTJBlock(config) for _ in range(config.n_layer)]) | ||
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) | ||
|
||
def forward( | ||
self, | ||
input_ids: torch.Tensor, | ||
position_ids: torch.Tensor, | ||
kv_caches: List[KVCache], | ||
input_metadata: InputMetadata, | ||
cache_events: Optional[List[torch.cuda.Event]], | ||
) -> torch.Tensor: | ||
hidden_states = self.wte(input_ids) | ||
for i in range(len(self.h)): | ||
if cache_events is None: | ||
cache_event = None | ||
else: | ||
cache_event = cache_events[i] | ||
layer = self.h[i] | ||
hidden_states = layer( | ||
position_ids, | ||
hidden_states, | ||
kv_caches[i], | ||
input_metadata, | ||
cache_event, | ||
) | ||
hidden_states = self.ln_f(hidden_states) | ||
return hidden_states | ||
|
||
|
||
class GPTJForCausalLM(nn.Module): | ||
|
||
def __init__(self, config: GPTJConfig): | ||
super().__init__() | ||
self.config = config | ||
assert not config.tie_word_embeddings | ||
self.transformer = GPTJModel(config) | ||
self.lm_head = ColumnParallelLinear(config.n_embd, | ||
config.vocab_size, | ||
gather_output=False, | ||
perform_initialization=False) | ||
self.sampler = Sampler(config.vocab_size) | ||
|
||
def forward( | ||
self, | ||
input_ids: torch.Tensor, | ||
positions: torch.Tensor, | ||
kv_caches: List[KVCache], | ||
input_metadata: InputMetadata, | ||
cache_events: Optional[List[torch.cuda.Event]], | ||
) -> Dict[int, SequenceOutputs]: | ||
hidden_states = self.transformer(input_ids, positions, kv_caches, | ||
input_metadata, cache_events) | ||
next_tokens = self.sampler(self.lm_head.weight, hidden_states, | ||
input_metadata, self.lm_head.bias) | ||
return next_tokens | ||
|
||
_column_parallel_weights = [ | ||
"wte.weight", "fc_in.weight", "fc_in.bias", "lm_head.weight", | ||
"lm_head.bias" | ||
] | ||
_row_parallel_weights = ["out_proj.weight", "fc_out.weight"] | ||
|
||
def load_weights(self, | ||
model_name_or_path: str, | ||
cache_dir: Optional[str] = None, | ||
use_np_cache: bool = False): | ||
tp_rank = get_tensor_model_parallel_rank() | ||
state_dict = self.state_dict() | ||
for name, loaded_weight in hf_model_weights_iterator( | ||
model_name_or_path, cache_dir, use_np_cache): | ||
if "attn.bias" in name or "attn.masked_bias" in name: | ||
continue | ||
|
||
is_attention_weight = False | ||
for stride_id, att_weight_name in enumerate( | ||
["q_proj", "k_proj", "v_proj"]): | ||
if att_weight_name not in name: | ||
continue | ||
param = state_dict[name.replace(att_weight_name, "qkv_proj")] | ||
shard_size = param.shape[1] | ||
loaded_weight = loaded_weight[shard_size * tp_rank:shard_size * | ||
(tp_rank + 1)] | ||
param_slice = param.data[shard_size * stride_id:shard_size * | ||
(stride_id + 1)] | ||
assert param_slice.shape == loaded_weight.shape | ||
param_slice.copy_(loaded_weight) | ||
is_attention_weight = True | ||
break | ||
if is_attention_weight: | ||
continue | ||
|
||
param = state_dict[name] | ||
load_tensor_parallel_weights(param, loaded_weight, name, | ||
self._column_parallel_weights, | ||
self._row_parallel_weights, tp_rank) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters