Skip to content

Conversation

@ababilinski
Copy link

  • Include a environment.yml file to help with repo installation on Windows 10
  • Cuda Support
  • no need to specify file type - .png and .jpg will work automagicly
  • MiDaS upgraded to MiDaS v2

@lyxpuppet
Copy link

I tried "conda env create --file environment.yml", but it doesn't work correctly

@lyxpuppet
Copy link

lyxpuppet commented Feb 25, 2021

in colab also get an error
2021-02-25 08:22:48.594185: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.10.1
running on device 0
0% 0/1 [00:00<?, ?it/s]Current Source ==> moon
Running depth extraction at 1614241370.0889313
initialize
device: cuda
Loading weights: MiDaS/model.pt
Using cache found in /root/.cache/torch/hub/facebookresearch_WSL-Images_master
0% 0/1 [00:01<?, ?it/s]
Traceback (most recent call last):
File "main.py", line 55, in
config['MiDaS_model_ckpt'], MidasNet, MiDaS_utils, target_w=640)
File "/content/3d-photo-inpainting/MiDaS/run.py", line 31, in run_depth
model = Net(model_path, non_negative=True)
File "/content/3d-photo-inpainting/MiDaS/midas_net.py", line 47, in init
self.load(path)
File "/content/3d-photo-inpainting/MiDaS/base_model.py", line 17, in load
self.load_state_dict(parameters)
File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line 830, in load_state_dict
self.class.name, "\n\t".join(error_msgs)))
RuntimeError: Error(s) in loading state_dict for MidasNet:
Missing key(s) in state_dict: "pretrained.layer3.6.conv1.weight", "pretrained.layer3.6.bn1.weight", "pretrained.layer3.6.bn1.bias", "pretrained.layer3.6.bn1.running_mean", "pretrained.layer3.6.bn1.running_var", "pretrained.layer3.6.conv2.weight", "pretrained.layer3.6.bn2.weight", "pretrained.layer3.6.bn2.bias", "pretrained.layer3.6.bn2.running_mean", "pretrained.layer3.6.bn2.running_var", "pretrained.layer3.6.conv3.weight", "pretrained.layer3.6.bn3.weight", "pretrained.layer3.6.bn3.bias", "pretrained.layer3.6.bn3.running_mean", "pretrained.layer3.6.bn3.running_var", "pretrained.layer3.7.conv1.weight", "pretrained.layer3.7.bn1.weight", "pretrained.layer3.7.bn1.bias", "pretrained.layer3.7.bn1.running_mean", "pretrained.layer3.7.bn1.running_var", "pretrained.layer3.7.conv2.weight", "pretrained.layer3.7.bn2.weight", "pretrained.layer3.7.bn2.bias", "pretrained.layer3.7.bn2.running_mean", "pretrained.layer3.7.bn2.running_var", "pretrained.layer3.7.conv3.weight", "pretrained.layer3.7.bn3.weight", "pretrained.layer3.7.bn3.bias", "pretrained.layer3.7.bn3.running_mean",
...........
........
size mismatch for pretrained.layer1.4.0.conv1.weight: copying a param with shape torch.Size([64, 64, 1, 1]) from checkpoint, the shape in current model is torch.Size([256, 64, 1, 1]).
size mismatch for pretrained.layer1.4.0.bn1.weight: copying

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

2 participants