Skip to content

wildfly-extras/wildfly-ai-feature-pack

WildFly AI Feature Pack

This feature-pack for WildFly simplifies the integration of AI in applications. The AI Galleon feature-pack is to be provisioned along with the WildFly Galleon feature-pack.

The Galleon layers defined in these feature-packs are decorator layers. This means that they need to be provisioned in addition to a WildFly base layer. The WildFly Installation Guide covers the base layers that WildFly defines.

NOTE: The base layer ai (that provisions WildFly AI subsystem) is the minimal base layer to use when provisioning Galleon layers that these feature-packs define.

Resources:

Galleon feature-pack compatible with WildFly

The Maven coordinates to use is: org.wildfly:wildfly-ai-galleon-pack:<version>

Supported AI types

For each AI type it supports, the feature-pack provides several Galleon layers that build upon each other :

  • Support for chat models to interact with a LLM:
    • gemini-chat-model
    • github-chat-model
    • groq-chat-model (same as openai-chat-model but targeting Groq)
    • mistral-ai-chat-model
    • ollama-chat-model
    • openai-chat-model
  • Support for streaming chat models to interact with a LLM:
    • github-streaming-chat-model
    • groq-streaming-chat-model (same as openai-chat-model but targeting Groq)
    • mistral-ai-streaming-chat-model
    • ollama-streaming-chat-model
    • openai-streaming-chat-model
  • Support for embedding models:
    • in-memory-embedding-model-all-minilm-l6-v2
    • in-memory-embedding-model-all-minilm-l6-v2-q
    • in-memory-embedding-model-bge-small-en
    • in-memory-embedding-model-bge-small-en-q
    • in-memory-embedding-model-bge-small-en-v15
    • in-memory-embedding-model-bge-small-en-v15-q
    • in-memory-embedding-model-e5-small-v2
    • in-memory-embedding-model-e5-small-v2-q
    • ollama-embedding-model
  • Support for embedding stores:
    • in-memory-embedding-store
    • neo4j-embedding-store
    • weaviate-embedding-store
  • Support for content retriever for RAG:
    • default-embedding-content-retriever: default content retriever using an in-memory-embedding-store and in-memory-embedding-model-all-minilm-l6-v2 for embedding model.
    • neo4j-content-retriever
    • web-search-engines
  • Support for Model Context Protocol (MCP):
    • mcp-sse: MCP Client using the Server-Sent Events (SSE) transport
    • mcp-stdio: MCP Client using the Standard Input/Output (stdio) transport

For more details on these you can take a look at LangChain4J and Smallrye-llm.

Using the WildFly AI Feature Pack

Provisioning of AI tools Galleon layers can be done in multiple ways according to the provisioning tooling in use.

Provisioning using CLI tool

You can download the latest Galleon CLI tool from the Galleon github project releases.

You need to define a Galleon provisioning configuration file such as:

<?xml version="1.0" ?>
<installation xmlns="urn:jboss:galleon:provisioning:3.0">
  <feature-pack location="org.wildfly:wildfly-galleon-pack:34.0.0.Final">
    <default-configs inherit="false"/>
    <packages inherit="false"/>
  </feature-pack>
  <feature-pack location="org.wildfly:wildfly-ai-galleon-pack:1.0.0-SNAPSHOT">
    <default-configs inherit="false"/>
    <packages inherit="false"/>
  </feature-pack>
  <config model="standalone" name="standalone.xml">
    <layers>
      <!-- Base layer -->
      <include name="cloud-server"/>
      <include name="ollama-chat-model"/>
      <include name="default-embedding-content-retriever"/>
    </layers>
  </config>
  <options>
    <option name="optional-packages" value="passive+"/>
    <option name="jboss-fork-embedded" value="true"/>
  </options>
</installation>

and provision it using the following command:

galleon.sh provision provisioning.xml --dir=my-wildfly-server

Provisioning using the WildFly Maven Plugin or the WildFly JAR Maven plugin

You need to include the AI feature-pack and layers in the Maven Plugin configuration. This looks like:

...
<feature-packs>
  <feature-pack>
    <location>org.wildfly:wildfly-galleon-pack:36.0.0.Final</location>
  </feature-pack>
  <feature-pack>
    <location>org.wildfly:wildfly-ai-galleon-pack:1.0.0-SNAPSHOT</location>
  </feature-pack>
</feature-packs>
<layers>
    <!-- layers may be used to customize the server to provision-->
    <layer>cloud-server</layer>
    <layer>ollama-chat-model</layer>
    <layer>default-embedding-content-retriever</layer>
    <!-- providing the following layers -->
    <!--
      <layer>in-memory-embedding-model-all-minilm-l6-v2</layer>
      <layer>in-memory-embedding-store</layer>
    -->
    <!-- Exisiting layers that can be used -->
    <!--
      <layer>ollama-embedding-model</layer>
      <layer>openai-chat-model</layer>
      <layer>mistral-ai-chat-model</layer>
      <layer>neo4j-embedding-store</layer>
      <layer>weaviate-embedding-store</layer>
      <layer>web-search-engines</layer>
    -->
</layers>
...

Provisioning using the WildFly Maven Plugin with Glow

...
  <groupId>org.wildfly.plugins</groupId>
  <artifactId>wildfly-maven-plugin</artifactId>
  <version>${version.wildfly.maven.plugin}</version>
    <configuration>
      <discoverProvisioningInfo>
        <spaces>
          <space>incubating</space>
        </spaces>
          <version>${version.wildfly.server}</version>
        </discoverProvisioningInfo>
        <name>ROOT.war</name>
        ...
    </configuration>
...

This example contains a complete WildFly Maven Plugin configuration.

[EXPERIMENTAL] Model Context Protocol Server

The feature pack supports also in a very experimental way the expose of your JakartaEE application as a Model Context Protocol Server. What you need to do in that case is to use the org.wildfly:wildfly-mcp-api artifact as a provided dependency and annotate the code you want to expose with the annotations provided by the API.

You may want to take a look at wildfly-weather example.

You can then use widldfly-mcp-chatbot from the wildfly-mcp project to connect via Server-Sent-Event to it and play with your tools.

Securing the MCP Server

To secure your MCP Server, bearer token authentication via OIDC is handled by the elytron-oidc-client subsystem. You can configure this mechanism using Keycloak. You can use the Keycloak container image:

podman volume create keycloack
podman run -p 8080:8080 -e KC_BOOTSTRAP_ADMIN_USERNAME=admin -e KC_BOOTSTRAP_ADMIN_PASSWORD=admin -v keycloack:/opt/keycloak/data/ quay.io/keycloak/keycloak:26.2.1 start-dev

Then you need to set-up Keycloack creating a realm myrealm, following the instructions provided there and create a user. In your application you need to add the following section in your web.xml:

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="https://jakarta.ee/xml/ns/jakartaee"
   xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xsi:schemaLocation="https://jakarta.ee/xml/ns/jakartaee https://jakarta.ee/xml/ns/jakartaee/web-app_6_0.xsd"
   version="6.0">
   ...
    <login-config>
        <auth-method>OIDC</auth-method>
    </login-config>
    ...
</web-app>

Then you need to secure your application using the elytron-oidc-client subsystem with a cli script like this one:

/subsystem=elytron-oidc-client/secure-deployment=ROOT.war:add(client-id=mcp-client, bearer-only=true, provider-url="${env.OIDC_PROVIDER_URL:http://localhost:8080}/realms/myrealm", ssl-required=EXTERNAL, public-client="true", principal-attribute="preferred_username")

Please note that the secured deployment MUST be configured with bearer-only=true within the elytron-oidc-client subsystem, as this ensures the MCP server relies on the bearer token provided by the MCP client for authentication.

To get the token associated to a user you can use the following command:

curl -X POST http://localhost:8080/realms/myrealm/protocol/openid-connect/token -H 'content-type: application/x-www-form-urlencoded' -d 'client_id=mcp-client&client_secret=UmqLUYjlRbDXZqa6vsiOmonjysIxTL7W' -d 'username=myuser&password=myuser&grant_type=password' | jq --raw-output '.access_token'

[EXPERIMENTAL] WASM Support

The feature pack supports also in a very experimental way Wasm Wasi modules. What you need to do in that case is to use the org.wildfly:wildfly-wasm-api artifact as a provided dependency and annotate the code you want to expose with the annotations provided by the API. Wasm binaries can be defined in the wasm subsystem to be injected as org.wildfly.wasm.api.WasmInvoker via CDI. You can even expose org.wildfly.wasm.api.WasmToolService as MCP tools.

You may want to take a look at wildfly-weather example.

About

No description, website, or topics provided.

Resources

License

Code of conduct

Security policy

Stars

Watchers

Forks

Packages

No packages published

Contributors 7

Languages