Skip to content

This research aims to spatially differentiate planted trees from natural trees using a transfer learning approach for image segmentation.

Notifications You must be signed in to change notification settings

wri/plantation_classifier

Repository files navigation

Overview

This research and code repository present a method for detection and separation of tree systems in Sentinel-2 satellite imagery. Using a transfer learning approach, learned tree features are extracted from Brandt et al.’s (2023) Tropical Tree Cover convolutional neural network and applied in a post-classification exercise. The application of the method is illustrated for 26 priority administrative districts throughout Ghana, given its highly heterogenous agricultural and natural landscape. The final product is a 10m resolution land use map of Ghana for the year 2020 that distinguishes between natural, monoculture and agroforestry tree systems.

Table of Contents

Data

coming soon.

Models

coming soon.

Contributing

See our contribution guidelines.

Citations

Brandt, J., Ertel, J., Spore, J., & Stolle, F. (2023). Wall-to-wall mapping of tree extent in the tropics with Sentinel-1 and Sentinel-2. Remote Sensing of Environment, 292, 113574. doi:10.1016/j.rse.2023.113574

License

This project is licensed under the MIT License - see the LICENSE.md file for details.

Repository Organization

├── LICENSE
├── README.md                      
├── contributing.md                  
├── requirements.txt               
├── Dockerfile                      
├── environment.yaml                 
├── params.yaml                      
├── config.yaml                      
├── dvc.yaml 
├── dvc.lock                        
├── src                                 <- Source code for use in this project.
│   ├── __init__.py                        
│   ├── stage_load_data.py          
│   ├── stage_prep_features.py      
│   ├── stage_select_and_tune.py    
│   ├── stage_train_model.py        
│   ├── stage_evaluate_model.py     
│   ├── transfer_learning.py        
│   │
│   ├── transfer                        <- Scripts/steps to perform feature extraction
│   │
│   ├── load_data                       <- Scripts to download or generate data
│   │   ├── __init__.py            
│   │   └── s3_download.py           
│   │
│   ├── features                        <- Scripts to import and prepare modeling inputs
│   │   ├── __init__.py             
│   │   ├── PlantationsData.py      
│   │   ├── create_xy.py            
│   │   ├── feature_selection.py    
│   │   ├── texture_analysis.py    
│   │   ├── slow_glcm.py            
│   │   └── fast_glcm.py            
│   │    
│   ├── model                           <- Scripts to train models, select features, tune
│   │   ├── __init__.py             
│   │   ├── train.py                   
│   │   └── tune.py               
│   │    
│   ├── evaluation                      <- Graphics and figures from model evaluation
│   │   ├── confusion_matrix_data.csv       
│   │   ├── confusion_matrix.png            
│   │   └── validation_visuals.py           
│   │
│   └── utils                           <- Scripts for utility functions
│       ├── __init__.py             
│       ├── cloud_removal.py         
│       ├── interpolation.py          
│       ├── proximal_steps.py        
│       ├── indices.py                
│       ├── logs.py                   
│       ├── preprocessing.py         
│       ├── validate_io.py          
│       ├── quick_viz.py             
│       └── mosaic.py               
│
├── notebooks                           <- Jupyter notebooks           
│   ├── exploratory_data_analysis.ipynb 
│   ├── extract_features.ipynb          
│   ├── modeling_approaches.ipynb       
│   ├── mvp-pilots.ipynb                
│   ├── post_processing.ipynb           
│   ├── prototype.ipynb   
│   ├── resegmentation_analysis.ipynb                
│   ├── scaling_workflow.ipynb          
│   ├── texture_analysis.ipynb        
│   ├── training_data_eda.ipynb        
│   └── tuning-feature-selection.ipynb 
│
│
├── .gitignore                     
├── .dockerignore                  
└── .dvcignore                   

About

This research aims to spatially differentiate planted trees from natural trees using a transfer learning approach for image segmentation.

Resources

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published