Skip to content

xp-forge/openai

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

OpenAI APIs for XP

Build status on GitHub XP Framework Module BSD Licence Requires PHP 7.4+ Supports PHP 8.0+ Latest Stable Version

This library implements OpenAI APIs with a low-level abstraction approach, supporting their REST and realtime APIs, request and response streaming, function calling and TikToken encoding.

Completions

Using the REST API, see https://platform.openai.com/docs/api-reference/making-requests

use com\openai\rest\OpenAIEndpoint;
use util\cmd\Console;

$ai= new OpenAIEndpoint('https://'.getenv('OPENAI_API_KEY').'@api.openai.com/v1');
$payload= [
  'model'    => 'gpt-4o-mini',
  'messages' => [['role' => 'user', 'content' => $prompt]],
];

Console::writeLine($ai->api('/chat/completions')->invoke($payload));

Streaming

The REST API can use server-sent events to stream responses, see https://platform.openai.com/docs/api-reference/streaming

use com\openai\rest\OpenAIEndpoint;
use util\cmd\Console;

$ai= new OpenAIEndpoint('https://'.getenv('OPENAI_API_KEY').'@api.openai.com/v1');
$payload= [
  'model'    => 'gpt-4o-mini',
  'messages' => [['role' => 'user', 'content' => $prompt]],
];

$stream= $ai->api('/chat/completions')->stream($payload);
foreach ($stream->deltas('content') as $delta) {
  Console::write($delta);
}
Console::writeLine();

To access the result object after streaming, use $stream->result(). It contains the choices list as well as model, filter results and usage information.

TikToken

Encodes text to tokens. Download the vocabularies cl100k_base (used for GPT-3.5 and GPT-4.0) and o200k_base (used for Omni and O1) first!

use com\openai\{Encoding, TikTokenFilesIn};

$source= new TikTokenFilesIn('.');

// By name => [9906, 4435, 0]
$tokens= Encoding::named('cl100k_base')->load($source)->encode('Hello World!');

// By model => [13225, 5922, 0]
$tokens= Encoding::for('omni')->load($source)->encode('Hello World!');

Instead of encode(), you can use count() to count the number of tokens.

Embeddings

To create an embedding for a given text, use https://platform.openai.com/docs/guides/embeddings/what-are-embeddings

use com\openai\rest\OpenAIEndpoint;
use util\cmd\Console;

$ai= new OpenAIEndpoint('https://'.getenv('OPENAI_API_KEY').'@api.openai.com/v1');

Console::writeLine($ai->api('/embeddings')->invoke([
  'input' => $text,
  'model' => 'text-embedding-3-small'],
));

Text to speech

To stream generate audio, use the API's transmit() method, which sends the given payload and returns the response. See https://platform.openai.com/docs/guides/text-to-speech/overview

use com\openai\rest\OpenAIEndpoint;
use util\cmd\Console;

$ai= new OpenAIEndpoint('https://'.getenv('OPENAI_API_KEY').'@api.openai.com/v1');
$payload= [
  'input' => $input,
  'voice' => 'alloy',  // or: echo, fable, onyx, nova, shimmer
  'model' => 'tts-1',
];

$stream= $ai->api('/audio/speech')->transmit($payload)->stream();
while ($stream->available()) {
  Console::write($stream->read());
}

Speech to text

To convert audio into text, upload files via the API's open() method, which returns an Upload instance. See https://platform.openai.com/docs/guides/speech-to-text/overview

use com\openai\rest\OpenAIEndpoint;
use io\File;
use util\cmd\Console;

$ai= new OpenAIEndpoint('https://'.getenv('OPENAI_API_KEY').'@api.openai.com/v1');
$file= new File($argv[1]);

$response= $ai->api('/audio/transcriptions')
  ->open(['model', 'whisper-1'])
  ->transfer('file', $file->in(), $file->filename)
  ->finish()
;
Console::writeLine($response->value());

You can also stream uploads from InputStreams as follows:

// ...setup code from above...

$upload= $ai->api('/audio/transcriptions')->open(['model', 'whisper-1']);

$stream= $upload->stream('file', 'audio.mp3');
while ($in->available()) {
  $stream->write($in->read());
}
$response= $upload->finish();

Console::writeLine($response->value());

Tracing the calls

REST API calls can be traced with the logging library:

use com\openai\rest\OpenAIEndpoint;
use util\log\Logging;

$ai= new OpenAIEndpoint('https://'.getenv('OPENAI_API_KEY').'@api.openai.com/v1');
$ai->setTrace(Logging::all()->toConsole());

// ...perform API calls...

Tool calls

There are two types of tools: Built-ins like file_search and code_interpreter (available in the assistants API) as well as custom functions, see https://platform.openai.com/docs/guides/function-calling

Defining functions

Custom functions map to instance methods in a class:

use com\openai\tools\Param;
use webservices\rest\Endpoint;

class Weather {
  private $endpoint;

  public function __construct(string $base= 'https://wttr.in/') {
    $this->endpoint= new Endpoint($base);
  }

  public function in(#[Param] string $city): string {
    return $this->endpoint->resource('/{0}?0mT', [$city])->get()->content(); 
  }
}

The Param annnotation may define a description and a JSON schema type:

  • #[Param('The name of the city')] $name
  • #[Param(type: ['type' => 'string', 'enum' => ['C', 'F']])] $unit

Passing custom functions

Custom functions are registered in a Functions instance and passed via tools inside the payload.

use com\openai\rest\OpenAIEndpoint;
use com\openai\tools\{Tools, Functions};

$functions= (new Functions())->register('weather', new Weather());

$ai= new OpenAIEndpoint('https://'.getenv('OPENAI_API_KEY').'@api.openai.com/v1');
$payload= [
  'model'    => 'gpt-4o-mini',
  'tools'    => new Tools($functions),
  'messages' => [['role' => 'user', 'content' => $prompt]],
];

Invoking custom functions

If tool calls are requested by the LLM, invoke them and return to next completion cycle. See https://platform.openai.com/docs/guides/function-calling/configuring-parallel-function-calling

use util\cmd\Console;

// ...setup code from above...

$calls= $functions->calls()->catching(fn($t) => $t->printStackTrace());
complete: $result= $ai->api('/chat/completions')->invoke($payload));

// If tool calls are requested, invoke them and return to next completion cycle
if ('tool_calls' === ($result['choices'][0]['finish_reason'] ?? null)) {
  $payload['messages'][]= $result['choices'][0]['message'];
  
  foreach ($result['choices'][0]['message']['tool_calls'] as $call) {
    $return= $calls->call($call['function']['name'], $call['function']['arguments']);
    $payload['messages'][]= [
      'role'         => 'tool',
      'tool_call_id' => $call['id'],
      'content'      => $return,
    ];
  }

  goto complete;
}

// Print out final result
Console::writeLine($result);

Passing context

Functions can be passed a context as follows by annotating parameters with the Context annotation:

use com\mongodb\{Collection, Document, ObjectId};
use com\openai\tools\{Context, Param};

// Declaration
class Memory {

  public function __construct(private Collection $facts) { }

  public function store(#[Context] Document $user, #[Param] string $fact): ObjectId {
    return $this->facts->insert(new Document(['owner' => $user->id(), 'fact' => $fact]))->id();
  }
}

// ...shortened for brevity...

$context= ['user' => $user];
$return= $calls->call($call['function']['name'], $call['function']['arguments'], $context);

Azure OpenAI

These endpoints differ slightly in how they are invoked, which is handled by the AzureAI implementation. See https://learn.microsoft.com/en-us/azure/ai-services/openai/overview

use com\openai\rest\AzureAIEndpoint;
use util\cmd\Console;

$ai= new AzureAIEndpoint(
  'https://'.getenv('AZUREAI_API_KEY').'@example.openai.azure.com/openai/deployments/mini',
  '2024-02-01'
);
$payload= [
  'model'    => 'gpt-4o-mini',
  'messages' => [['role' => 'user', 'content' => $prompt]],
];

Console::writeLine($ai->api('/chat/completions')->invoke($payload));

Distributing requests

The Distributed endpoint allows to distribute requests over multiple endpoints. The ByRemainingRequests class uses the x-ratelimit-remaining-requests header to determine the target. See https://platform.openai.com/docs/guides/rate-limits

use com\openai\rest\{AzureAIEndpoint, Distributed, ByRemainingRequests};
use util\cmd\Console;

$endpoints= [
  new AzureAIEndpoint('https://[email protected]/openai/deployments/mini', '2024-02-01'),
  new AzureAIEndpoint('https://[email protected]/openai/deployments/mini', '2024-02-01'),
];

$ai= new Distributed($endpoints, new ByRemainingRequests());
$payload= [
  'model'    => 'gpt-4o-mini',
  'messages' => [['role' => 'user', 'content' => $prompt]],
];

Console::writeLine($ai->api('/chat/completions')->invoke($payload));
foreach ($endpoints as $i => $endpoint) {
  Console::writeLine('Endpoint #', $i, ': ', $endpoint->rateLimit());
}

For more complex load balancing, have a look at this blog article using Azure API management

Realtime API

The realtime API allows streaming audio and/or text to and from language models, see https://platform.openai.com/docs/guides/realtime

use com\openai\realtime\RealtimeApi;
use util\cmd\Console;

$api= new RealtimeApi('wss://api.openai.com/v1/realtime?model=gpt-4o-realtime-preview');
$session= $api->connect([
  'Authorization' => 'Bearer '.getenv('OPENAI_API_KEY'),
  'OpenAI-Beta'   => 'realtime=v1',
];
Console::writeLine($session);

// Send prompt
$api->transmit([
  'type' => 'conversation.item.create',
  'item' => [
    'type'    => 'message',
    'role'    => 'user',
    'content' => [['type' => 'input_text', 'text' => $message]],
  ]
]);

// Receive response(s)
$api->send(['type' => 'response.create', 'response' => ['modalities' => ['text']]]);
do {
  $event= $api->receive();
  Console::writeLine($event);
} while ('response.done' !== $event['type'] && 'error' !== $event['type']);

$api->close();

For Azure AI, the setup code is slightly different:

use com\openai\realtime\RealtimeApi;
use util\cmd\Console;

$api= new RealtimeApi('wss://example.openai.azure.com/openai/realtime?'.
  '?api-version=2024-10-01-preview'.
  '&deployment=gpt-4o-realtime-preview'
);
$session= $api->connect(['api-key' => getenv('AZUREAI_API_KEY')]);

See also