Skip to content

xyLpf/DeepGlobe-Road-Extraction-Challenge

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DeepGlobe-Road-Extraction-Challenge

Code for the 1st place solution in DeepGlobe Road Extraction Challenge.

Requirements

  • Cuda 8.0
  • Python 2.7
  • Pytorch 0.2.0
  • cv2

Usage

Data

Place 'train', 'valid' and 'test' data folders in the 'dataset' folder.

Data is from DeepGlobe Road Extraction Challenge. You should sign in first to get the data.

Train

  • Run python train.py to train the default D-LinkNet34.

Predict

  • Run python test.py to predict on the default D-LinkNet34.

Download trained D-LinkNet34

About

D-LinkNet: LinkNet with Pretrained Encoder and Dilated Convolution for High Resolution Satellite Imagery Road Extraction

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%