Skip to content

Detection of senseless human body based on millimeter wave radar

License

Notifications You must be signed in to change notification settings

yaosting/16xx-MMW

Repository files navigation

<<<<<<< HEAD

How to run: cd /BR_SVM/python python3 run_svm_predict.py seg3_train.txt

note:

  1. This demo need 'pandas' to be installed, which is very hard to be installed on Raspberry.
  2. This BR_SVM/examples/feature_extraction.ipynb is used to Serialize batch training data
  3. This demo includes a trained model in BR_SVM/examples/seg3_train.txt/seg15_train.txt/seggroup_train.txt
  4. Please ingore the info 'Accuaracy = ..........'

more details in examples/...txt #training_testing_data_svm_acc_vel_timeseg3.txt is the all data #seg3_test.txt and seg3_train.txt is the original data

#seg3_test.txt.scale and seg3_train.txt.scale is the Scaled data cmd: svm-scale seg3_train.txt > seg3_train.txt.scale

#seg3_train.txt.range is the scale rule cdm: svm-scale -s train.range seg3_train.txt > seg3_train.txt.scale #使用train.range对test进行同样的缩放 svm-scale -r train.range seg3_test.txt > seg3_test.txt.scale

#seg3_train.txt.scale.out and seg3_train.txt.scale.png is the result of the grid

#seg3_train.txt.model cmd: svm-train.exe [options] training_set_file [model_file] 1.rho #决策函数中的常数项的相反数(-b) 2.svm的输出 y = y + model.sv_coef(i)*RBF(u,x);

#seg3_test.txt.predict is the prediction for the seg3_test.txt.scale
cmd: svm-predict -b 1 test_file data_file.model output_file

#we can use the model information to build the DecisionFunction (created by seg3_train.txt.model)

%% DecisionFunction function plabel = DecisionFunction(x,model)

gamma = model.Parameters(4);

RBF = @(u,v)( exp(-gamma.*sum( (u-v).^2) ) );

len = length(model.sv_coef); y = 0;

for i = 1:len u = model.SVs(i,:); y = y + model.sv_coef(i)*RBF(u,x); end b = -model.rho; y = y + b;

if y >= 0 plabel = 1; else plabel = -1; end

Real-time stream data fall detection by libsvm

3b87a3a23493cdbd1971114b03360e037ee896ba

About

Detection of senseless human body based on millimeter wave radar

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published