Skip to content

Commit

Permalink
ENH Faster DoRA in when no dropout/eval mode (huggingface#2122)
Browse files Browse the repository at this point in the history
  • Loading branch information
ariG23498 authored and yaswanth19 committed Oct 20, 2024
1 parent 0a8f42e commit 817b591
Show file tree
Hide file tree
Showing 6 changed files with 77 additions and 45 deletions.
14 changes: 13 additions & 1 deletion docs/source/developer_guides/lora.md
Original file line number Diff line number Diff line change
Expand Up @@ -138,9 +138,21 @@ from peft import PeftModel
model = PeftModel.from_pretrained(base_model, peft_model_id, ephemeral_gpu_offload=True)
```

DoRA is optimized (computes faster and takes less memory) for models in the evaluation mode, or when dropout is set to 0. We reuse the
base result at those times to get the speedup.
Running [dora finetuning](https://github.com/huggingface/peft/blob/main/examples/dora_finetuning/dora_finetuning.py)
with `CUDA_VISIBLE_DEVICES=0 time python examples/dora_finetuning/dora_finetuning.py --quantize --lora_dropout 0 --batch_size 16 --eval_step 2 --use_dora`
on a 4090 with gradient accumulation set to 2 and max step to 20 resulted with the following observations:

| | Without Optimization | With Optimization |
| :--: | :--: | :--: |
| train_runtime | 359.7298 | **279.2676** |
| train_samples_per_second | 1.779 | **2.292** |
| train_steps_per_second | 0.056 | **0.072** |

#### Caveats

- DoRA only supports linear and Conv2d layers at the moment.
- DoRA only supports embedding, linear, and Conv2d layers at the moment.
- DoRA introduces a bigger overhead than pure LoRA, so it is recommended to merge weights for inference, see [`LoraModel.merge_and_unload`].
- DoRA should work with weights quantized with bitsandbytes ("QDoRA"). However, issues have been reported when using QDoRA with DeepSpeed Zero2.

Expand Down
32 changes: 20 additions & 12 deletions src/peft/tuners/lora/bnb.py
Original file line number Diff line number Diff line change
Expand Up @@ -235,20 +235,24 @@ def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor:
x = x.to(compute_dtype)

if not self.use_dora[active_adapter]:
output = lora_B(lora_A(dropout(x))) * scaling
result = result + lora_B(lora_A(dropout(x))) * scaling
else:
x = dropout(x)
output = self.lora_magnitude_vector[active_adapter](
if isinstance(dropout, torch.nn.Identity) or not self.training:
base_result = result
else:
x = dropout(x)
base_result = None

result = result + self.lora_magnitude_vector[active_adapter](
x,
lora_A=lora_A,
lora_B=lora_B,
scaling=scaling,
base_layer=self.get_base_layer(),
base_result=base_result,
)
if requires_conversion:
output = output.to(expected_dtype)

result = result + output
result = result.to(expected_dtype)

return result

Expand Down Expand Up @@ -486,20 +490,24 @@ def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor:
x = x.to(lora_A.weight.dtype)

if not self.use_dora[active_adapter]:
output = lora_B(lora_A(dropout(x))) * scaling
result = result + lora_B(lora_A(dropout(x))) * scaling
else:
x = dropout(x)
output = self.lora_magnitude_vector[active_adapter](
if isinstance(dropout, torch.nn.Identity) or not self.training:
base_result = result
else:
x = dropout(x)
base_result = None

result = result + self.lora_magnitude_vector[active_adapter](
x,
lora_A=lora_A,
lora_B=lora_B,
scaling=scaling,
base_layer=self.get_base_layer(),
base_result=base_result,
)
if requires_conversion:
output = output.to(expected_dtype)

result = result + output
result = result.to(expected_dtype)

return result

Expand Down
29 changes: 13 additions & 16 deletions src/peft/tuners/lora/dora.py
Original file line number Diff line number Diff line change
Expand Up @@ -62,13 +62,11 @@ def update_layer(self, *, base_layer, lora_A, lora_B, scaling, place_on_cpu=Fals
weight_norm = weight_norm.to("cpu")
self.weight = nn.Parameter(weight_norm, requires_grad=True)

def forward(self, x, *, lora_A, lora_B, scaling, base_layer):
def forward(self, x, *, lora_A, lora_B, scaling, base_layer, base_result=None):
"""
For DoRA, calculate the extra output from LoRA with DoRA applied. This should be added on top of the base layer
output.
"""
lora_result = lora_B(lora_A(x))

# Don't use `lora_weight = lora_B.weight @ lora_A.weight` because this causes errors with FSDP. Instead,
# calculate the same but using forward.
x_eye = torch.eye(lora_A.weight.shape[1], device=lora_A.weight.device, dtype=x.dtype)
Expand All @@ -86,19 +84,18 @@ def forward(self, x, *, lora_A, lora_B, scaling, base_layer):
# during backpropagation"
weight_norm = weight_norm.detach()
mag_norm_scale = (magnitude / weight_norm).view(1, -1)
result_dora = (mag_norm_scale - 1) * (
F.linear(x, transpose(weight, self.fan_in_fan_out))
) + mag_norm_scale * lora_result * scaling

# Note: Computation could potentially be accelerated by using the code below instead of calculating X@W again.
# This is only correct if dropout=0, otherwise results will differ:
# https://github.com/huggingface/peft/pull/1474#issuecomment-1964682771
# bias = self.get_base_layer().bias
# if bias is not None:
# result = result - bias
# result = mag_norm_scale * result + mag_norm_scale * lora_B(lora_A(x)) * scaling
# if bias is not None:
# result = result + bias

lora_result = lora_B(lora_A(x))

bias = None
if base_result is not None:
bias = base_layer.bias
if bias is not None:
base_result = base_result - bias
else:
base_result = F.linear(x, transpose(weight, self.fan_in_fan_out))

result_dora = (mag_norm_scale - 1) * base_result + mag_norm_scale * lora_result * scaling

return result_dora

Expand Down
21 changes: 16 additions & 5 deletions src/peft/tuners/lora/hqq.py
Original file line number Diff line number Diff line change
Expand Up @@ -218,13 +218,24 @@ def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor:
x = x.to(compute_dtype)

if not self.use_dora[active_adapter]:
output = lora_B(lora_A(dropout(x))) * scaling
result = result + lora_B(lora_A(dropout(x))) * scaling
else:
output = self._apply_dora(x, lora_A, lora_B, scaling, active_adapter)
if isinstance(dropout, torch.nn.Identity) or not self.training:
base_result = result
else:
x = dropout(x)
base_result = None

result = result + self.lora_magnitude_vector[active_adapter](
x,
lora_A=lora_A,
lora_B=lora_B,
scaling=scaling,
base_layer=self.get_base_layer(),
base_result=base_result,
)
if requires_conversion:
output = output.to(expected_dtype)

result = result + output
result = result.to(expected_dtype)

return result

Expand Down
8 changes: 7 additions & 1 deletion src/peft/tuners/lora/layer.py
Original file line number Diff line number Diff line change
Expand Up @@ -585,13 +585,19 @@ def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor:
if not self.use_dora[active_adapter]:
result = result + lora_B(lora_A(dropout(x))) * scaling
else:
x = dropout(x)
if isinstance(dropout, nn.Identity) or not self.training:
base_result = result
else:
x = dropout(x)
base_result = None

result = result + self.lora_magnitude_vector[active_adapter](
x,
lora_A=lora_A,
lora_B=lora_B,
scaling=scaling,
base_layer=self.get_base_layer(),
base_result=base_result,
)

result = result.to(torch_result_dtype)
Expand Down
18 changes: 8 additions & 10 deletions src/peft/tuners/lora/tp_layer.py
Original file line number Diff line number Diff line change
Expand Up @@ -201,23 +201,21 @@ def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any):
x = x.to(lora_A.weight.dtype)

if not self.use_dora[active_adapter]:
lora_result = lora_A(dropout(x))
if isinstance(lora_result, tuple):
lora_result = lora_result[0]
lora_result = lora_B(lora_result)
if isinstance(lora_result, tuple):
lora_result = lora_result[0]
lora_result = lora_result * scaling

result = result + lora_result
result = result + lora_B(lora_A(dropout(x))) * scaling
else:
x = dropout(x)
if isinstance(dropout, torch.nn.Identity) or not self.training:
base_result = result
else:
x = dropout(x)
base_result = None

result = result + self.lora_magnitude_vector[active_adapter](
x,
lora_A=lora_A,
lora_B=lora_B,
scaling=scaling,
base_layer=self.get_base_layer(),
base_result=base_result,
)

result = result.to(torch_result_dtype)
Expand Down

0 comments on commit 817b591

Please sign in to comment.