Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
34 changes: 28 additions & 6 deletions gptcache/manager/vector_data/pgvector.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,10 +25,13 @@ class _VectorType(UserDefinedType):
"""
cache_ok = True

def __init__(self, precision=8):
def __init__(self, precision=8, use_halfvec=False):
self.precision = precision
self.use_halfvec = use_halfvec

def get_col_spec(self, **_):
if self.use_halfvec
return f"halfvec({self.precision})"
return f"vector({self.precision})"

# pylint: disable=unused-argument
Expand All @@ -40,7 +43,7 @@ def result_processor(self, dialect, coltype):
return lambda value: value


def _get_model_and_index(table_prefix, vector_dimension, index_type, lists):
def _get_model_and_index(table_prefix, vector_dimension, index_type, lists, use_halfvec=False):
class VectorStoreTable(Base):
"""
vector store table
Expand All @@ -49,7 +52,7 @@ class VectorStoreTable(Base):
__tablename__ = table_prefix + "_pg_vector_store"
__table_args__ = {"extend_existing": True}
id = Column(Integer, primary_key=True, autoincrement=False)
embedding = Column(_VectorType(vector_dimension), nullable=False)
embedding = Column(_VectorType(vector_dimension, use_halfvec), nullable=False)

vector_store_index = Index(
f"idx_{table_prefix}_pg_vector_store_embedding",
Expand All @@ -76,12 +79,16 @@ class PGVector(VectorBase):
:param index_params: the index parameters for pgvector, defaults to 'vector_l2_ops' index:
{"index_type": "L2", "params": {"lists": 100, "probes": 10}.
:type index_params: dict
:param use_halfvec: whether to use half-precision vector, defaults to False
:type use_halfvec: bool
"""

INDEX_PARAM = {
"L2": {"operator": "<->", "name": "vector_l2_ops"}, # The only one supported now
"cosine": {"operator": "<=>", "name": "vector_cosine_ops"},
"inner_product": {"operator": "<->", "name": "vector_ip_ops"},
"halfvec_l2": {"operator": "<->", "name": "halfvec_l2_ops"},
"halfvec_cosine": {"operator": "<=>", "name": "halfvec_cosine_ops"},
}

def __init__(
Expand All @@ -91,6 +98,7 @@ def __init__(
collection_name: str = "gptcache",
dimension: int = 0,
top_k: int = 1,
use_halfvec: bool = False;
):
if dimension <= 0:
raise ValueError(
Expand All @@ -100,11 +108,18 @@ def __init__(
self.top_k = top_k
self.index_params = index_params
self._url = url
self.use_halfvec = use_halfvec

#correcting the index type passed by user
if use_halfvec and "halfvec" not in index_params["index_type"]:
index_params["index_type"] = f"halfvec_{index_params['index_type'].lower()}"

self._store, self._index = _get_model_and_index(
collection_name,
dimension,
index_type=self.INDEX_PARAM[index_params["index_type"]]["name"],
lists=index_params["params"]["lists"]
lists=index_params["params"]["lists"],
use_halfvec=use_halfvec
)
self._connect(url)
self._create_collection()
Expand All @@ -116,19 +131,23 @@ def _connect(self, url):
def _create_collection(self):
with self._engine.connect() as con:
con.execution_options(isolation_level="AUTOCOMMIT").execute(text("CREATE EXTENSION IF NOT EXISTS vector;"))

self._store.__table__.create(bind=self._engine, checkfirst=True)
self._index.create(bind=self._engine, checkfirst=True)

def _query(self, session):
return session.query(self._store)

def _format_data_for_search(self, data):

return f"[{','.join(map(str, data))}]"

def mul_add(self, datas: List[VectorData]):
data_array, id_array = map(list, zip(*((data.data, data.id) for data in datas)))
np_data = np.array(data_array).astype("float32")
if self.use_halfvec:
np_data = np.array(data_array).astype("float16")
else:
np_data = np.array(data_array).astype("float32")
entities = [{"id": id, "embedding": embedding.tolist()} for id, embedding in zip(id_array, np_data)]

with self._session() as session:
Expand All @@ -139,6 +158,9 @@ def search(self, data: np.ndarray, top_k: int = -1):
if top_k == -1:
top_k = self.top_k

if self.use_halfvec:
data = data.astype(np.float16)

formatted_data = self._format_data_for_search(data.reshape(1, -1)[0].tolist())
index_config = self.INDEX_PARAM[self.index_params["index_type"]]
similarity = self._store.embedding.op(index_config["operator"])(formatted_data)
Expand Down
Loading