Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Function call syntax support #206

Merged
merged 3 commits into from
Jul 21, 2018
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -52,6 +52,11 @@ To evaluate the interpolation at position `(x, y, ...)`, simply do
v = itp[x, y, ...]
```

or, alternatively, using function call syntax:
```jl
v = itp(x, y, ...)
```

Some interpolation objects support computation of the gradient, which
can be obtained as
```jl
Expand Down
5 changes: 5 additions & 0 deletions src/b-splines/indexing.jl
Original file line number Diff line number Diff line change
Expand Up @@ -51,6 +51,11 @@ end
getindex_impl(itp)
end

function (itp::BSplineInterpolation{T,N,TCoefs,IT,GT,pad})(args...) where {T,N,TCoefs,IT,GT,pad}
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

sorry if I'm being dense, but do you really need to specify all the parameters? wouldn't

(itp::TheITPType)(args...) = itp[args...]

work?

# support function calls
itp[args...]
end

function gradient_impl(itp::Type{BSplineInterpolation{T,N,TCoefs,IT,GT,Pad}}) where {T,N,TCoefs,IT<:DimSpec{BSpline},GT<:DimSpec{GridType},Pad}
meta = Expr(:meta, :inline)
# For each component of the gradient, alternately calculate
Expand Down
5 changes: 5 additions & 0 deletions src/extrapolation/extrapolation.jl
Original file line number Diff line number Diff line change
Expand Up @@ -63,6 +63,11 @@ end
getindex_impl(etp, xs...)
end

function (etp::Extrapolation{T,N,ITPT,IT,GT,ET})(args...) where {T,N,ITPT,IT,GT,ET}
# support function calls
etp[args...]
end

checkbounds(::AbstractExtrapolation,I...) = nothing


Expand Down
5 changes: 5 additions & 0 deletions src/extrapolation/filled.jl
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,11 @@ extrapolate(itp::AbstractInterpolation{T,N,IT,GT}, fillvalue) where {T,N,IT,GT}
convert(Tret, fitp.fillvalue)
end

function (fitp::FilledExtrapolation{T,N,ITP,IT,GT,FT})(args...) where {T,N,ITP,IT,GT,FT}
# support function calls
fitp[args...]
end

@inline Base.checkbounds(::Type{Bool}, A::FilledExtrapolation, I...) = _checkbounds(A, 1, indices(A), I)
@inline _checkbounds(A, d::Int, IA::TT1, I::TT2) where {TT1,TT2} =
(I[1] >= lbound(A, d, IA[1])) & (I[1] <= ubound(A, d, IA[1])) & _checkbounds(A, d+1, Base.tail(IA), Base.tail(I))
Expand Down
5 changes: 5 additions & 0 deletions src/gridded/indexing.jl
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,11 @@ end
:(getindex(itp, $(args...)))
end

function (itp::GriddedInterpolation{T,N,TCoefs,IT,K,pad})(args...) where {T,N,TCoefs,IT,K,pad}
# support function calls
itp[args...]
end

# Indexing with vector inputs. Here, it pays to pre-process the input indexes,
# because N*n is much smaller than n^N.
# TODO: special-case N=1, because there is no reason to separately cache the indexes.
Expand Down
4 changes: 4 additions & 0 deletions src/scaling/scaling.jl
Original file line number Diff line number Diff line change
Expand Up @@ -45,6 +45,10 @@ end

getindex(sitp::ScaledInterpolation{T,1}, x::Number, y::Int) where {T} = y == 1 ? sitp[x] : throw(BoundsError())

function (sitp::ScaledInterpolation{T,N,ITPT,IT})(args...) where {T,N,ITPT,IT<:DimSpec}
sitp[args...]
end

size(sitp::ScaledInterpolation, d) = size(sitp.itp, d)
lbound(sitp::ScaledInterpolation{T,N,ITPT,IT,OnGrid}, d) where {T,N,ITPT,IT} = 1 <= d <= N ? sitp.ranges[d][1] : throw(BoundsError())
lbound(sitp::ScaledInterpolation{T,N,ITPT,IT,OnCell}, d) where {T,N,ITPT,IT} = 1 <= d <= N ? sitp.ranges[d][1] - boundstep(sitp.ranges[d]) : throw(BoundsError())
Expand Down
24 changes: 24 additions & 0 deletions test/b-splines/function-call-syntax.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,24 @@
module ExtrapFunctionCallSyntax

using Base.Test, Interpolations, DualNumbers

# Test if b-spline interpolation by function syntax yields identical results
f(x) = sin((x-3)*2pi/9 - 1)
xmax = 10
A = Float64[f(x) for x in 1:xmax]
itpg = interpolate(A, BSpline(Linear()), OnGrid())
schemes = (Flat,Line,Free)

for T in (Cubic, Quadratic), GC in (OnGrid, OnCell)
for etp in map(S -> @inferred(interpolate(A, BSpline(T(S())), GC())), schemes),
x in linspace(1,xmax,100)
@test (getindex(etp, x)) == etp(x)
end
end

for T in (Constant, Linear), GC in (OnGrid, OnCell), x in linspace(1,xmax,100)
etp = interpolate(A, BSpline(T()), GC())
@test (getindex(etp, x)) == etp(x)
end

end
1 change: 1 addition & 0 deletions test/b-splines/runtests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -7,5 +7,6 @@ include("cubic.jl")
include("mixed.jl")
include("multivalued.jl")
include("non1.jl")
include("function-call-syntax.jl")

end
104 changes: 104 additions & 0 deletions test/extrapolation/function-call-syntax.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,104 @@
module ExtrapFunctionCallSyntax

using Base.Test, Interpolations, DualNumbers

# Test if extrapolation by function syntax yields identical results
f(x) = sin((x-3)*2pi/9 - 1)
xmax = 10
A = Float64[f(x) for x in 1:xmax]
itpg = interpolate(A, BSpline(Linear()), OnGrid())

schemes = (
Flat,
Linear,
Reflect,
Periodic
)

for etp in map(E -> @inferred(extrapolate(itpg, E())), schemes),
x in [
# In-bounds evaluation
3.4, 3, dual(3.1),
# Out-of-bounds evaluation
-3.4, -3, dual(-3,1),
13.4, 13, dual(13,1)
]
@test (getindex(etp, x)) == etp(x)
end

etpg = extrapolate(itpg, Flat())
@test typeof(etpg) <: AbstractExtrapolation

@test etpg(-3) == etpg(-4.5) == etpg(0.9) == etpg(1.0) == A[1]
@test etpg(10.1) == etpg(11) == etpg(148.298452) == A[end]

etpf = @inferred(extrapolate(itpg, NaN))
@test typeof(etpf) <: Interpolations.FilledExtrapolation
@test parent(etpf) === itpg

@test @inferred(size(etpf)) == (xmax,)
@test isnan(@inferred(etpf(-2.5)))
@test isnan(etpf(0.999))
@test @inferred(etpf(1)) ≈ f(1)
@test etpf(10) ≈ f(10)
@test isnan(@inferred(etpf(10.001)))

@test etpf(2.5,1) == etpf(2.5) # for show method
@test_throws BoundsError etpf(2.5,2)
@test_throws BoundsError etpf(2.5,2,1)

x = @inferred(etpf(dual(-2.5,1)))
@test isa(x, Dual)

etpl = extrapolate(itpg, Linear())
k_lo = A[2] - A[1]
x_lo = -3.2
@test etpl(x_lo) ≈ A[1] + k_lo * (x_lo - 1)
k_hi = A[end] - A[end-1]
x_hi = xmax + 5.7
@test etpl(x_hi) ≈ A[end] + k_hi * (x_hi - xmax)

xmax, ymax = 8,8
g(x, y) = (x^2 + 3x - 8) * (-2y^2 + y + 1)

itp2g = interpolate(Float64[g(x,y) for x in 1:xmax, y in 1:ymax], (BSpline(Quadratic(Free())), BSpline(Linear())), OnGrid())
etp2g = extrapolate(itp2g, (Linear(), Flat()))

@test @inferred(etp2g(-0.5,4)) ≈ itp2g(1,4) - 1.5 * epsilon(etp2g(dual(1,1),4))
@test @inferred(etp2g(5,100)) ≈ itp2g(5,ymax)

etp2ud = extrapolate(itp2g, ((Linear(), Flat()), Flat()))
@test @inferred(etp2ud(-0.5,4)) ≈ itp2g(1,4) - 1.5 * epsilon(etp2g(dual(1,1),4))
@test @inferred(etp2ud(5, -4)) == etp2ud(5,1)
@test @inferred(etp2ud(100, 4)) == etp2ud(8,4)
@test @inferred(etp2ud(-.5, 100)) == itp2g(1,8) - 1.5 * epsilon(etp2g(dual(1,1),8))

etp2ll = extrapolate(itp2g, Linear())
@test @inferred(etp2ll(-0.5,100)) ≈ (itp2g(1,8) - 1.5 * epsilon(etp2ll(dual(1,1),8))) + (100 - 8) * epsilon(etp2ll(1,dual(8,1)))

# Allow element types that don't support conversion to Int (#87):
etp87g = extrapolate(interpolate([1.0im, 2.0im, 3.0im], BSpline(Linear()), OnGrid()), 0.0im)
@test @inferred(etp87g(1)) == 1.0im
@test @inferred(etp87g(1.5)) == 1.5im
@test @inferred(etp87g(0.75)) == 0.0im
@test @inferred(etp87g(3.25)) == 0.0im

etp87c = extrapolate(interpolate([1.0im, 2.0im, 3.0im], BSpline(Linear()), OnCell()), 0.0im)
@test @inferred(etp87c(1)) == 1.0im
@test @inferred(etp87c(1.5)) == 1.5im
@test @inferred(etp87c(0.75)) == 0.75im
@test @inferred(etp87c(3.25)) == 3.25im
@test @inferred(etp87g(0)) == 0.0im
@test @inferred(etp87g(3.7)) == 0.0im

# Make sure it works with Gridded too
etp100g = extrapolate(interpolate(([10;20],),[100;110], Gridded(Linear())), Flat())
@test @inferred(etp100g(5)) == 100
@test @inferred(etp100g(15)) == 105
@test @inferred(etp100g(25)) == 110
# issue #178
a = randn(10,10) + im*rand(10,10)
etp = @inferred(extrapolate(interpolate((1:10, 1:10), a, Gridded(Linear())), 0.0))
@test @inferred(etp(-1,0)) === 0.0+0.0im

end
1 change: 1 addition & 0 deletions test/extrapolation/runtests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -103,3 +103,4 @@ end

include("type-stability.jl")
include("non1.jl")
include("function-call-syntax.jl")
74 changes: 74 additions & 0 deletions test/gridded/function-call-syntax.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,74 @@
module GriddedFunctionCallSyntax

using Interpolations, Base.Test

for D in (Constant, Linear), G in (OnCell, OnGrid)
## 1D
a = rand(5)
knots = (collect(linspace(1,length(a),length(a))),)
itp = @inferred(interpolate(knots, a, Gridded(D())))
@inferred(getindex(itp, 2))
@inferred(getindex(itp, CartesianIndex((2,))))
for i = 2:length(a)-1
@test itp(i) ≈ a[i]
@test itp(CartesianIndex((i,))) ≈ a[i]
end
@inferred(getindex(itp, knots...))
@test itp[knots...] ≈ a
# compare scalar indexing and vector indexing
x = knots[1]+0.1
v = itp(x)
for i = 1:length(x)
@test v[i] ≈ itp(x[i])
end
# check the fallback vector indexing
x = [2.3,2.2] # non-increasing order
v = itp[x]
for i = 1:length(x)
@test v[i] ≈ itp(x[i])
end
# compare against BSpline
itpb = @inferred(interpolate(a, BSpline(D()), G()))
for x in linspace(1.1,4.9,101)
@test itp(x) ≈ itpb(x)
end

## 2D
A = rand(6,5)
knots = (collect(linspace(1,size(A,1),size(A,1))),collect(linspace(1,size(A,2),size(A,2))))
itp = @inferred(interpolate(knots, A, Gridded(D())))
@test parent(itp) === A
@inferred(getindex(itp, 2, 2))
@inferred(getindex(itp, CartesianIndex((2,2))))
for j = 2:size(A,2)-1, i = 2:size(A,1)-1
@test itp(i,j) ≈ A[i,j]
@test itp(CartesianIndex((i,j))) ≈ A[i,j]
end
@test itp[knots...] ≈ A
@inferred(getindex(itp, knots...))
# compare scalar indexing and vector indexing
x, y = knots[1]+0.1, knots[2]+0.6
v = itp(x,y)
for j = 1:length(y), i = 1:length(x)
@test v[i,j] ≈ itp(x[i],y[j])
end
# check the fallback vector indexing
x = [2.3,2.2] # non-increasing order
y = [3.5,2.8]
v = itp[x,y]
for j = 1:length(y), i = 1:length(x)
@test v[i,j] ≈ itp(x[i],y[j])
end
# compare against BSpline
itpb = @inferred(interpolate(A, BSpline(D()), G()))
for y in linspace(1.1,5.9,101), x in linspace(1.1,4.9,101)
@test itp(x,y) ≈ itpb(x,y)
end

A = rand(8,20)
knots = ([x^2 for x = 1:8], [0.2y for y = 1:20])
itp = interpolate(knots, A, Gridded(D()))
@test itp(4,1.2) ≈ A[2,6]
end

end
3 changes: 2 additions & 1 deletion test/gridded/runtests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -2,5 +2,6 @@ module GriddedTests

include("gridded.jl")
include("mixed.jl")
include("function-call-syntax.jl")

end
end
100 changes: 100 additions & 0 deletions test/scaling/function-call-syntax.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,100 @@
module ScalingFunctionCallTests

using Interpolations
using Base.Test

# Model linear interpolation of y = -3 + .5x by interpolating y=x
# and then scaling to the new x range

itp = interpolate(1:1.0:10, BSpline(Linear()), OnGrid())

sitp = @inferred(scale(itp, -3:.5:1.5))
@test typeof(sitp) <: Interpolations.ScaledInterpolation
@test parent(sitp) === itp

for (x,y) in zip(-3:.05:1.5, 1:.1:10)
@test sitp(x) ≈ y
end

# Verify that it works in >1D, with different types of ranges

gauss(phi, mu, sigma) = exp(-(phi-mu)^2 / (2sigma)^2)
testfunction(x,y) = gauss(x, 0.5, 4) * gauss(y, -.5, 2)

xs = -5:.5:5
ys = -4:.2:4
zs = Float64[testfunction(x,y) for x in xs, y in ys]

itp2 = interpolate(zs, BSpline(Quadratic(Flat())), OnGrid())
sitp2 = @inferred scale(itp2, xs, ys)

for x in xs, y in ys
@test testfunction(x,y) ≈ sitp2(x,y)
end

# Iteration
itp = interpolate(rand(3,3,3), BSpline(Quadratic(Flat())), OnCell())
knots = map(d->1:10:21, 1:3)
sitp = @inferred scale(itp, knots...)

iter = @inferred(eachvalue(sitp))
state = @inferred(start(iter))
@test !(@inferred(done(iter, state)))
val, state = @inferred(next(iter, state))

function foo!(dest, sitp)
i = 0
for s in eachvalue(sitp)
dest[i+=1] = s
end
dest
end
function bar!(dest, sitp)
for I in CartesianRange(size(dest))
dest[I] = sitp(I)
end
dest
end
rfoo = Array{Float64}( Interpolations.ssize(sitp))
rbar = similar(rfoo)
foo!(rfoo, sitp)
bar!(rbar, sitp)
@test rfoo ≈ rbar

# with extrapolation
END = 10
xs = linspace(-5, 5, END)
ys = map(sin, xs)

function run_tests(sut::Interpolations.AbstractInterpolation{T,N,IT,OnGrid}, itp) where {T,N,IT}
for x in xs
@test ≈(sut[x],sin(x),atol=sqrt(eps(sin(x))))
end
@test sut(-5) == sut(-5.1) == sut(-15.8) == sut(-Inf) == itp(1)
@test sut(5) == sut(5.1) == sut(15.8) == sut(Inf) == itp(END)
end

function run_tests(sut::Interpolations.AbstractInterpolation{T,N,IT,OnCell}, itp) where {T,N,IT}
halfcell = (xs[2] - xs[1]) / 2

for x in (5 + halfcell, 5 + 1.1halfcell, 15.8, Inf)
@test sut(-x) == itp(.5)
@test sut(x) == itp(END+.5)
end
end

for GT in (OnGrid, OnCell)
itp = interpolate(ys, BSpline(Quadratic(Flat())), GT())

# Test extrapolating, then scaling
eitp = extrapolate(itp, Flat())
seitp = scale(eitp, xs)
run_tests(seitp, itp)

# Test scaling, then extrapolating
sitp = scale(itp, xs)
esitp = extrapolate(sitp, Flat())
run_tests(esitp, itp)
end

end
Loading