Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Prove coprimality of aks #4382

Open
wants to merge 9 commits into
base: develop
Choose a base branch
from
Open
Changes from 8 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
256 changes: 256 additions & 0 deletions set.mm
Original file line number Diff line number Diff line change
Expand Up @@ -646567,6 +646567,22 @@ fixed reference functional determined by this vector (corresponding to
AUNWGXFWIYKWSWTWQVN $.
$}

${
aks4d1lem1.1 $e |- ( ph -> N e. ( ZZ>= ` 3 ) ) $.
aks4d1lem1.2 $e |- B = ( |^ ` ( ( 2 logb N ) ^ 5 ) ) $.
$( Technical lemma to reduce proof size. (Contributed by metakunt,
14-Nov-2024.) $)
aks4d1lem1 $p |- ( ph -> ( B e. NN /\ 9 < B ) ) $=
( cn wcel c9 clt wbr c2 co c5 cfv cc0 cr a1i c3 syl c1 clogb cceil cz 2re
cexp wa 2pos cuz eluzelz zred 0red 3re 3pos cle eluzle ltletrd 1red ltned
1lt2 necomd relogbcld cn0 5nn0 reexpcld ceilcld 9re 9pos 3lexlogpow5ineq4
ceilge lttrd jca elnnz sylibr eleq1i wceq breqtrrd ) ABFGZHBIJAKCUALZMUEL
ZUBNZFGZVQAVTUCGZOVTIJZUFWAAWBWCAVSAVRMAKCKPGAUDQOKIJAUGQACACRUHNGZCUCGDR
CUISUJZAORCAUKZRPGAULQWEORIJAUMQAWDRCUNJDRCUOSZUPATKATKAUQTKIJAUSQURUTVAM
VBGAVCQVDZVEZAOHVTWFHPGAVFQZAVTWIUJZOHIJAVGQAHVSVTWJWHWKACWEWGVHAVSPGVSVT
UNJWHVSVISUPZVJVKVTVLVMBVTFEVNVMAHVTBIWLBVTVOAEQVPVK $.
$}

${
$d A k $. $d N k $. $d k ph $.
aks4d1p1p1.1 $e |- ( ph -> A e. RR+ ) $.
Expand Down Expand Up @@ -647681,6 +647697,246 @@ fixed reference functional determined by this vector (corresponding to
FUVOUVPYQWN $.
$}

${
aks4d1p8d1.1 $e |- ( ph -> P e. Prime ) $.
aks4d1p8d1.2 $e |- ( ph -> M e. NN ) $.
aks4d1p8d1.3 $e |- ( ph -> N e. NN ) $.
aks4d1p8d1.4 $e |- ( ph -> P || M ) $.
aks4d1p8d1.5 $e |- ( ph -> -. P || N ) $.
$( If a prime divides one number ` M ` , but not another number ` N ` ,
then it divides the quotient of ` M ` and the gcd of ` M ` and ` N ` .
(Contributed by Thierry Arnoux, 10-Nov-2024.) $)
aks4d1p8d1 $p |- ( ph -> P || ( M / ( M gcd N ) ) ) $=
( cgcd co cmul cdvds wbr wcel cn nnzd syl2anc cz wa cdiv cprime prmnn syl
gcdnncl wn c1 wceq intnand wb dvdsgcdb syl3anc mtbid coprm biimpa gcddvds
syl21anc simpld coprmdvds2d nnproddivdvdsd mpbid ) ABCDJKZLKCMNBCVBUAKMNA
BVBCABABUBOZBPOEBUCUDZQZAVBACPODPOVBPOFGCDUERZQZACFQZAVCVBSOZBVBMNZUFZBVB
JKUGUHZEVGABCMNZBDMNZTZVJAVNVMIUIABSOCSOZDSOZVOVJUJVEVHADGQZBCDUKULUMVCVI
TVKVLBVBUNUOUQHAVBCMNZVBDMNZAVPVQVSVTTVHVRCDUPRURUSABVBCVDVFFUTVA $.
$}

${
$d P p $. $d Q p $. $d R p $. $d p ph $.
aks4d1p8d2.1 $e |- ( ph -> R e. NN ) $.
aks4d1p8d2.2 $e |- ( ph -> N e. NN ) $.
aks4d1p8d2.3 $e |- ( ph -> P e. Prime ) $.
aks4d1p8d2.4 $e |- ( ph -> Q e. Prime ) $.
aks4d1p8d2.5 $e |- ( ph -> P || R ) $.
aks4d1p8d2.6 $e |- ( ph -> Q || R ) $.
aks4d1p8d2.7 $e |- ( ph -> -. P || N ) $.
aks4d1p8d2.8 $e |- ( ph -> Q || N ) $.
$( Any prime power dividing a positive integer is less than that integer if
that integer has another prime factor. (Contributed by metakunt,
13-Nov-2024.) $)
aks4d1p8d2 $p |- ( ph -> ( P ^ ( P pCnt R ) ) < R ) $=
( cpc co wcel c1 wbr cdvds wn vp cexp cmul cprime cn prmnn nnred reexpcld
syl pccld remulcld clt recnd mulid1d nnrpd nn0zd rpexpcld prmgt1 ltmul2dd
1red eqbrtrrd cle nnzd zexpcld cgcd gcdcomd wceq cv wral wrex wa cc0 0lt1
a1i 0red ltnled mpbid exp1d eqcomd oveq2d cz 1zzd syl2anc eqtrd adantr wb
breq1 adantl bicomd biimpd mpd pm2.65da neqcomd pcelnn mpbird prmdvdsexpb
syl3anc notbid nnexpcld pceq0 breq12d simpr oveq1d rspcime rexnal pc2dvds
pcid coprm pcdvds coprmdvds2d wi zmulcld dvdsle ltletrd ) ABBDNOZUBOZXPCU
COZDABXOABABUDPZBUEPHBUFUIZUGABDHFUJZUHZAXPCYAACACUDPZCUEPICUFUIZUGZUKADF
UGAXPQUCOXPXQULAXPAXPYAUMUNAQCXPAUTZYDABXOABXSUOAXOXTUPUQAYBQCULRICURUIUS
VAAXQDSRZXQDVBRZAXPCDABXOABXSVCXTVDZACYCVCZADFVCAXPCVEOCXPVEOZQAXPCYHYIVF
ACXPSRZTZYJQVGZAYLUAVHZCNOZYNXPNOZVBRZUAUDVIZTZAYQTZUAUDVJZYSAYTUACUDAYNC
VGZVKZYTCCNOZCXPNOZVBRZTZAUUGUUBAUUGQVLVBRZTZAVLQULRZUUIUUJAVMVNAVLQAVOYE
VPVQAUUFUUHAUUDQUUEVLVBAUUDCCQUBOZNOZQACUUKCNAUUKCACACYDUMVRVSVTAYBQWAPUU
LQVGIAWBQCXGWCWDAUUEVLVGZYLAYLCBVGZTABCABCVGZBESRZAUUOVKZCESRZUUPAUURUUOM
WEUUQUURUUPUUQUUPUURUUOUUPUURWFABCESWGWHWIWJWKAUUPTUUOLWEWLWMAYKUUNAYBXRX
OUEPZYKUUNWFIHAUUSBDSRZJAXRDUEPZUUSUUTWFHFBDWNWCWOCBXOWPWQWRWOAYBXPUEPUUM
YLWFIABXOXSXTWSCXPWTWCWOXAWRWOWEUUCYQUUFUUCYOUUDYPUUEVBUUCYNCCNAUUBXBZXCU
UCYNCXPNUVBXCXAWRWOIXDUUAYSWFAYQUAUDXEVNVQAYKYRACWAPXPWAPZYKYRWFYIYHCXPUA
XFWCWRWOAYBUVCYLYMWFIYHCXPXHWCVQWDAXRUVAXPDSRHFBDXIWCKXJAXQWAPUVAYFYGXKAX
PCYHYIXLFXQDXMWCWKXN $.
$}

${
aks4d1p8d3.1 $e |- ( ph -> N e. NN ) $.
aks4d1p8d3.2 $e |- ( ph -> P e. Prime ) $.
aks4d1p8d3.3 $e |- ( ph -> P || N ) $.
$( The remainder of a division with its maximal prime power is coprime with
that prime power. (Contributed by metakunt, 13-Nov-2024.) $)
aks4d1p8d3 $p |- ( ph ->
( ( N / ( P ^ ( P pCnt N ) ) ) gcd ( P ^ ( P pCnt N ) ) ) = 1 ) $=
( co cgcd c1 cdvds wbr cz wcel cn syl2anc cc0 wb syl nnzd clt cexp cprime
cpc cdiv pcdvds prmnn pccld zexpcld zcnd 0red 1red zred 0lt1 prmgt1 lttrd
wne a1i ltned necomd nn0zd expne0d dvdsval2 syl3anc mpbid gcdcomd wceq wn
pcndvds2 coprm pcelnn mpbird rpexp eqtrd ) ACBBCUCGZUAGZUDGZVOHGVOVPHGZIA
VPVOAVOCJKZVPLMZABUBMZCNMZVREDBCUEOAVOLMVOPUPCLMVRVSQABVNABAVTBNMEBUFRSZA
BCEDUGZUHZABVNABWBUIAPBAPBAUJZAPIBWEAUKABWBULPITKAUMUQAVTIBTKEBUNRUOURUSA
VNWCUTVAACDSVOCVBVCVDZWDVEAVQIVFZBVPHGIVFZABVPJKVGZWHAVTWAWIEDBCVHOAVTVSW
IWHQEWFBVPVIOVDABLMVSVNNMZWGWHQWBWFAWJBCJKZFAVTWAWJWKQEDBCVJOVKBVPVNVLVCV
KVM $.
$}

${
$d A p r y $. $d A r x y $. $d B o $. $d B r x y $. $d N k p $.
$d N p r $. $d R k p $. $d R p r y $. $d k p ph $. $d o ph $.
$d B f $. $d N p q $. $d R p q $. $d f ph $. $d ph q $.
aks4d1p8.1 $e |- ( ph -> N e. ( ZZ>= ` 3 ) ) $.
aks4d1p8.2 $e |- A = ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ k e.
( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ k ) - 1 ) ) $.
aks4d1p8.3 $e |- B = ( |^ ` ( ( 2 logb N ) ^ 5 ) ) $.
aks4d1p8.4 $e |- R = inf ( { r e. ( 1 ... B ) | -. r || A } , RR , < ) $.
$( Show that ` N ` and ` R ` are coprime for AKS existence theorem, with
eliminated hypothesis. (Contributed by Thierry Arnoux, 10-Nov-2024.) $)
aks4d1p8 $p |- ( ph -> ( N gcd R ) = 1 ) $=
( c1 co clt wbr wcel cle adantr c2 cc0 vp vx vy vo vf vq cgcd wa cdvds wn
cdiv cv cprime cfz crab cr cinf wceq a1i wss wral ssrab2 cn elfznn adantl
nnred ex ssrdv sstrd cfn c0 wne fzfid ssfid aks4d1p3 rabn0 sylibr fiminre
wrex syl3anc breq1 notbid 1zzd cz clogb c5 cexp cceil cfv c3 zred ltletrd
syl 1red ltned necomd relogbcld cn0 ad4antr wb ad2antrr wi dvdsval2 mpbid
nnzd cmul nncnd mulid2d sylbir jca dvdsle syl2anc eqbrtrd nnrpd lemuldivd
lttrd ltled letrd mpbird elfzd simplr zexpcld eqcomd cfl ad3antrrr simprl
c9 recnd cc crp redivcld ltnled breq1d infrefilb 3expa mpd elrab3 con2bid
con3d r19.29a 2re 2pos cuz eluzelz 0red 3re 3pos eluzle 1lt2 5nn0 ceilcld
reexpcld eqeltrd simplrl prmnn nnne0d aks4d1p4 simpld anass anbi1i imbi1i
mpbi imp remulcld elfzle2 9pos eqeltrrd 3lexlogpow5ineq4 ceilged breqtrrd
9re nnge1d lemulge11d ledivmul2d anasss pccld zcnd nn0zd expne0d divcan1d
cpc pcdvds cmin cprod elnnz flcld gtned logb1 2z leidd 0lt1 1lt9 logblebd
0zd elnn0z nnnn0d zsubcld fprodzcl zmulcld eleq1d aks4d1p8d3 exp0d pcelnn
flge nngt0d prmgt1 ltexp2d eqbrtrrd ltmulgt11d rpexpcld expge1d nnledivrp
ltdivmul2d simprr simplrr simpr prmdvdsncoprmbd bicomd biimpd coprmdvds2d
aks4d1p8d2 simprd ad5antr pm2.21dd lbinfle ltdiv2d div1d breqtrd pm2.65da
elrabd 1rp aks4d1p7 aks4d1p5 ) ABCDEFGHIJKALFDUGMZNOZUHZDUYNUKMBUIOZUJZUY
QUYPUAULZDUIOZUYSFUIOUJZUHZUYRUAUMUYPUYSUMPZUHZVUBUHZUYQDDUYSUKMZQOZVUEUY
QUHZDGULZBUIOZUJZGLCUNMZUOZUPNUQZVUFQDVUNURZVUHKUSVUHVUMUPUTZUBULUCULQOUC
VUMVAUBVUMVSZVUFVUMPVUNVUFQOVUEVUPUYQVUDVUPVUBUYPVUPVUCAVUPUYOAVUMVULUPVU
MVULUTAVUKGVULVBUSZAUDVULUPAUDULZVULPZVUSUPPAVUTUHVUSVUTVUSVCPAVUSCVDVEVF
VGVHVIZRRRRVUEVUQUYQVUDVUQVUBUYPVUQVUCAVUQUYOAVUPVUMVJPZVUMVKVLZVUQVVAAVU
LVUMALCVMVURVNZAVUKGVULVSVVCABCEFGHIJVOVUKGVULVPVQUBUCVUMVRVTRRRRVUHVUKVU
FBUIOZUJZGVUFVULVUIVUFURVUJVVEVUIVUFBUIWAWBVUHVUFLCVUHWCACWDPZUYOVUCVUBUY
QACSFWEMZWFWGMZWHWIZWDCVVJURAJUSZAVVIAVVHWFASFSUPPAUUAUSZTSNOAUUBUSZAFAFW
JUUCWIPZFWDPZHWJFUUDWMZWKZATWJFAUUEZWJUPPAUUFUSVVQTWJNOAUUGUSAVVNWJFQOHWJ
FUUHWMZWLZALSALSAWNZLSNOAUUIUSWOWPZWQWFWRPAUUJUSUULZUUKUUMZWSVUHUYTVUFWDP
ZVUDUYTVUAUYQUUNZVUHUYSWDPZUYSTVLZDWDPZUYTVWEWTVUHUYSVUDUYSVCPZVUBUYQVUCV
WJUYPUYSUUOVEZXAZXEZVUDVWHVUBUYQVUDUYSVWKUUPZXAVUDUYTUHZVUAUHZUYQUHZVWIXB
VUHVWIXBVWQDVWPDVCPZUYQAVWRUYOVUCUYTVUAADVULPZVWRAVWSDBUIOZUJZABCDEFGHIJK
UUQZUURZDCVDWMZWSZRZXEVWQVUHVWIVWPVUEUYQVUDUYTVUAUUSZUUTZUVAUVBUYSDXCVTXD
VUHLUYSXFMZDQOLVUFQOVUHVXIUYSDQVUHUYSVUHUYSVWLXGXHVUHVWGVWRUHZUYTUYSDQOZV
UHVWGVWRVWMVUHVWQVWRVXHVXFXIXJVWFVXJUYTVXKUYSDXKUVCXLXMVUHLDUYSVUHWNVUEDU
PPZUYQVUDVXLVUBUYPVXLVUCAVXLUYOADVXDVFZRRRZRZVUHUYSVWLXNZXOXDVUEVUFCQOZUY
QVUDVXQVUBVUDVXQDCUYSXFMZQOVUDDCVXRAVXLUYOVUCVXMXAZVUDCAVVGUYOVUCVWDXAZWK
ZVUDCUYSVYAVUDUYSVWKVFZUVDUYPDCQOZVUCAVYCUYOAVWSVYCVXCDLCUVEWMRRZVUDCUYSV
YAVYBUYPTCQOZVUCAVYEUYOATCVVRACVWDWKZATYGCVVRYGUPPAUVKUSZVYFTYGNOAUVFUSAY
GVVJCNAYGVVIVVJVYGVWCACVVJUPVVKVYFUVGAFVVQVVSUVHAVVIVWCUVIWLVVKUVJZXPZXQR
RVUDUYSVWKUVLZUVMXRVUDDCUYSVXSVYAVUDUYSVWKXNZUVNXSRRXTVUHVWTVVFVUEVWTUYQV
UEDDUYSUYSDUWAMZWGMZUKMZVYMXFMZBUIVUEVYODVUEDVYMVUEDVXNYHZVUEVYMVUEUYSVYL
VUEUYSVUDVWJVUBVWKRZXEVUEUYSDUYPVUCVUBYAZVUDUYTVUAVWRVXEUVOZUVPZYBZUVQZVU
EUYSVYLVUEUYSVYQXGZVUDVWHVUBVWNRVUEVYLVYTUVRZUVSZUVTYCVUEVYNVYMBVUEVYMDUI
OZVYNWDPZVUEVUCVWRWUFVYRVYSUYSDUWBXLZVUEVYMWDPZVYMTVLVWIWUFWUGWTWUAWUEVUE
DVYSXEVYMDXCVTXDZWUAABWDPZUYOVUCVUBAWUKFSCWEMZYDWIZWGMZLVVHSWGMYDWIZUNMZF
EULZWGMZLUWCMZEUWDZXFMZWDPAWUNWUTAFWUMAFAFVCPZVVOTFNOZUHZAVVOWVCVVPVVTXJW
VBWVDWTAFUWEUSXSZXEZAWUMWRPZWUMWDPZTWUMQOZUHZAWVHWVIAWULASCVVLVVMVYFVYIVW
BWQZUWFATWULQOZWVIATSLWEMZWULQAWVMTASYIPSTVLSLVLWVMTURASVVLYHATSVVRVVMUWG
VWBSUWHVTYCASLCSWDPAUWIUSASVVLUWJVWATLNOAUWKUSVYFVYIALCVWAVYFALYGCVWAVYGV
YFLYGNOAUWLUSVYHXPXQUWMXMAWULUPPTWDPZWVLWVIWTWVKAUWNZWULTUXDXLXDXJWVGWVJW
TAWUMUWOUSXSYBAWUPWUSEALWUOVMAWUQWUPPZUHZWURLWVQFWUQAVVOWVPWVFRWVQWUQWVPW
UQVCPAWUQWUOVDVEUWPYBWVQWCUWQUWRUWSABWVAWDBWVAURAIUSUWTXSYEVUEUYSDVYSVYRV
UDUYTVUAYFZUXAVUEVYNBUIOZVYNVUMPZUJZVUEVUNVYNQOZUJZWWAVUEDVYNQOZUJZWWCVUE
VYNDNOZWWEVUEWWFDDVYMXFMNOZVUELVYMNOWWGVUEUYSTWGMZLVYMNVUEUYSWUCUXBVUETVY
LNOWWHVYMNOVUEVYLVUEVYLVCPZUYTWVRVUEVUCVWRWWIUYTWTVYRVYSUYSDUXCXLXSUXEVUE
UYSTVYLVUDUYSUPPVUBVYBRZAWVNUYOVUCVUBWVOYEWUDVUDLUYSNOZVUBVUCWWKUYPUYSUXF
VERZUXGXDUXHVUEVYMDVUEVYMWUAWKZVUDDYJPZVUBUYPWWNVUCAWWNUYOADVXDXNRRRZUXIX
DVUEDDVYMVXNVXNVUEUYSVYLVUDUYSYJPVUBVYKRWUDUXJZUXMXSVUEVYNDVUEDVYMVXNWWMW
UEYKZVXNYLXDVUEWWDWWBVUEDVUNVYNQVUOVUEKUSZYMWBXDVUEVUPVVBWWCWWAXBVUDVUPVU
BUYPVUPVUCAVUPUYOAVUMVULUPVURAUEVULUPAUEULZVULPZWWSUPPAWWTUHWWSWWTWWSVCPA
WWSCVDVEVFVGVHVIRRRZVUDVVBVUBUYPVVBVUCAVVBUYOVVDRRRZVUPVVBUHZWVTWWBWXCWVT
WWBVUPVVBWVTWWBVYNVUMYNYOVGYSXLYPVUEVYNVULPZWVSWWAWTVUEVYNLCVUEWCZVUDVVGV
UBVXTRZWUJVUELVYMXFMZDQOLVYNQOVUEWXGVYMDQVUEVYMWUBXHVUEWUFVYMDQOZWUHVUEWU
IVWRWUFWXHXBWUAVYSVYMDXKXLYPZXMVUELDVYMUYPLUPPZVUCVUBAWXJUYOVWARXAZVXNWWP
XOXDVUEVYNDCWWQVXNVUDCUPPVUBVYARZVUELVYMQOZVYNDQOZVUEUYSVYLWWJVYTVUDLUYSQ
OVUBVYJRUXKZVUEVWRVYMYJPWXMWXNWTVYSWWPDVYMUXLXLXDVUDVYCVUBVYDRZXRXTWXDWVT
WVSVUKWVSUJGVYNVULVUIVYNURVUJWVSVUIVYNBUIWAWBYQYRWMXSVUEVYMBUIOZVYMVUMPZU
JZVUEVUNVYMQOZUJZWXSVUEDVYMQOZUJZWYAVUEVYMDNOZWYCVUEUFULZFUIOZWYEDUIOZUHZ
WYDUFUMVUEWYEUMPZUHZWYHUHUYSWYEDFVUEVWRWYIWYHVYSXAVUEWVBWYIWYHVUEVWPWVBVX
GVWOWVBVUAVUDWVBUYTUYPWVBVUCAWVBUYOWVERRRRXIZXAVUEVUCWYIWYHVYRXAVUEWYIWYH
YAVUEUYTWYIWYHWVRXAWYJWYFWYGUXNWYJVUAWYHVUDUYTVUAWYIUXORWYJWYFWYGYFUYAVUE
UYNLVLZWYHUFUMVSZVUELUYNVUELUYNWXKUYPUYOVUCVUBAUYOUXPXAWOWPVUEWYLWYMVUEWY
MWYLVUEFDUFWYKVYSUXQUXRUXSYPYTVUEVYMDWWMVXNYLXDVUEWYBWXTVUEDVUNVYMQWWRYMW
BXDVUEVUPVVBWYAWXSXBWXAWXBWXCWXRWXTWXCWXRWXTVUPVVBWXRWXTVYMVUMYNYOVGYSXLY
PVUEWXRWXQVUEVYMVULPWXRWXQUJZWTVUEVYMLCWXEWXFWUAWXOVUEVYMDCWWMVXNWXLWXIWX
PXRXTVUKWYNGVYMVULVUIVYMURVUJWXQVUIVYMBUIWAWBYQWMYRXSUXTXMRVUHVWQVXAVXHAV
XAUYOVUCUYTVUAUYQAVWSVXAVXBUYBUYCXIUYDUYJUBUCVUFVUMUYEVTXMVUHVUFDNOVUGUJV
UHVUFDLUKMZDNVUHWWKVUFWYONOVUEWWKUYQWWLRVUHLUYSDLYJPVUHUYKUSVXPVUEWWNUYQW
WORUYFXDVUHDVUEDYIPUYQVYPRUYGUYHVUHVUFDVUEVUFUPPZUYQVUDWYPVUBVUDDUYSVXSVY
BVWNYKRRVXOYLXDUYIAVUBUAUMVSUYOABCDEFGUAHIJKUYLRYTRUYM $.
$}

${
$d A r $. $d B r $. $d N k x z $. $d N r $. $d R k x z $. $d R r $.
$d k ph x z $.
aks4d1p9.1 $e |- ( ph -> N e. ( ZZ>= ` 3 ) ) $.
aks4d1p9.2 $e |- A = ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ k e.
( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ k ) - 1 ) ) $.
aks4d1p9.3 $e |- B = ( |^ ` ( ( 2 logb N ) ^ 5 ) ) $.
aks4d1p9.4 $e |- R = inf ( { r e. ( 1 ... B ) | -. r || A } , RR , < ) $.
$( Show that the order is bound by the squared binary logarithm.
(Contributed by metakunt, 14-Nov-2024.) $)
aks4d1p9 $p |- ( ph -> ( ( 2 logb N ) ^ 2 ) < ( ( odZ ` R ) ` N ) ) $=
( c2 co wbr cdvds wcel cz cc0 c1 adantr vx vz clogb cexp codz cfv clt cle
wn wa cfl cr wb 2re a1i 2pos c3 cuz eluzelz syl zred 0red 3re 3pos eluzle
ltletrd 1red 1lt2 ltned necomd relogbcld resqcld cn cgcd w3a cfz aks4d1p4
wceq simpld elfznn aks4d1p8 3jca nnzd flge syl2anc biimpd imp wi cmin cn0
odzcl nnnn0d zexpcld 1zzd zsubcld cv cprod cmul c9 aks4d1lem1 nnred flcld
nngt0d cc wne 2cnd gtned logb1 2z leidd 0lt1 nnge1d logblebd eqbrtrrd 0zd
mpbid jca elnn0z sylibr fzfid adantl zmulcld eleq1d mpbird iddvds odzdvds
cmpt fveq2 breq1d wral ssidd fmpttd fprodfvdvdsd simpr elfzd eqidd oveq2d
fprodzcl oveq1d fvmptd rspcdva breq12d dvdsmultr2d breqtrrd dvdstrd mpdan
prodeq2dv ex simprd pm2.65da ltnled ) ALFUCMZLUDMZFDUEUFUFZUGNUUNUUMUHNZU
IAUUODBONZAUUOUJZUUNUUMUKUFZUHNZUUPAUUOUUSAUUOUUSAUUMULPUUNQPZUUOUUSUMAUU
LALFLULPAUNUOZRLUGNAUPUOZAFAFUQURUFPZFQPZHUQFUSUTZVAZARUQFAVBZUQULPAVCUOU
VFRUQUGNAVDUOAUVCUQFUHNHUQFVEUTVFASLASLAVGZSLUGNAVHUOVIVJZVKZVLZAUUNADVMP
ZUVDFDVNMSVRZVOZUUNVMPAUVLUVDUVMADSCVPMPZUVLAUVOUUPUIZABCDEFGHIJKVQZVSDCV
TUTZUVEABCDEFGHIJKWAWBZFDWKUTZWCZUUMUUNWDWEWFWGUUQUUSUUPAUUSUUPWHUUOAUUSU
UPAUUSUJZDFUUNUDMZSWIMZBADQPUUSADUVRWCTUWBUWCSUWBFUUNAUVDUUSUVETZAUUNWJPZ
UUSAUUNUVTWLZTWMUWBWNZWOZABQPZUUSAUWJFLCUCMZUKUFZUDMZSUURVPMZFEWPZUDMZSWI
MZEWQZWRMZQPAUWMUWRAFUWLUVEAUWLQPZRUWLUHNZUJUWLWJPZAUWTUXAAUWKALCUVAUVBAC
ACVMPWSCUGNACFHJWTVSZXAZACUXCXCZUVIVKZXBARUWKUHNZUXAALSUCMZRUWKUHALXDPZLR
XEZLSXEZVOUXHRVRAUXIUXJUXKAXFARLUVGUVBXGUVIWBLXHUTALSCLQPAXIUOALUVAXJUVHR
SUGNAXKUOUXDUXEACUXCXLXMXNAUWKULPRQPUXGUXAUMUXFAXOUWKRWDWEXPXQUWLXRXSZWMA
UWNUWQEASUURXTZAUWOUWNPZUJZUWPSUXOFUWOAUVDUXNUVETUXNUWOWJPAUXNUWOUWOUURVT
ZWLYAWMUXOWNWOYRYBABUWSQBUWSVRZAIUOYCYDTADUWDONZUUSAUXRUUNUUNONZAUUTUXSUW
AUUNYEUTAUVNUWFUXRUXSUMUVSUWGFUUNDYFWEYDTUWBUWDUWSBOUWBUWDUWMUWRUWIUWBFUW
LUWEAUXBUUSUXLTWMUWBUWNUWQEUWBSUURXTUWBUXNUJZUWPSUXTFUWOUWBUVDUXNUWETUXTU
WOUXNUWOVMPUWBUXPYAWLWMUXTWNWOZYRUWBUUNUAUWNFUAWPZUDMZSWIMZYGZUFZUWNUWOUY
EUFZEWQZONZUWDUWRONUWBUBWPZUYEUFZUYHONZUYIUBUWNUUNUYJUUNVRUYKUYFUYHOUYJUU
NUYEYHYIAUYLUBUWNYJUUSAUBUWNUWNEUYEUXMAUWNYKAUAUWNUYDQAUYBUWNPZUJZUYCSUYN
FUYBAUVDUYMUVETUYNUYBUYMUYBVMPAUYBUURVTYAWLWMUYNWNWOYLYMTUWBUUNSUURUWHUWB
UUMUWBUULAUULULPUUSUVJTVLXBAUUTUUSUWATASUUNUHNUUSAUUNUVTXLTAUUSYNYOZUUAUW
BUYFUWDUYHUWROUWBUAUUNUYDUWDUWNUYEQUWBUYEYPUWBUYBUUNVRZUJZUYCUWCSWIUYQUYB
UUNFUDUWBUYPYNYQYSUYOUWIYTUWBUWNUYGUWQEUXTUAUWOUYDUWQUWNUYEQUXTUYEYPUXTUY
BUWOVRZUJZUYCUWPSWIUYSUYBUWOFUDUXTUYRYNYQYSUWBUXNYNUYAYTUUGUUBXPUUCUXQUWB
IUOUUDUUEUUHTWGUUFAUVPUUOAUVOUVPUVQUUITUUJAUUMUUNUVKAUUNUVTXAUUKYD $.
$}

${
$d B a h $. $d B h k $. $d B h r $. $d N a b c $. $d N a b h $.
$d N b c k $. $d N c r $. $d a ph $. $d ph r $.
aks4d1.1 $e |- ( ph -> N e. ( ZZ>= ` 3 ) ) $.
aks4d1.2 $e |- B = ( |^ ` ( ( 2 logb N ) ^ 5 ) ) $.
$( Lemma 4.1 from ~ https://www3.nd.edu/%7eandyp/notes/AKS.pdf , existence
of a polynomially bounded number by the digit size of ` N ` that asserts
the polynomial subspace that we need to search to guarantee that ` N `
is prime. Eventually we want to show that the polynomial searching
space is bounded by degree ` B ` . (Contributed by metakunt,
14-Nov-2024.) $)
aks4d1 $p |- ( ph -> E. r e. ( 1 ... B ) ( ( N gcd r ) = 1 /\
( ( 2 logb N ) ^ 2 ) < ( ( odZ ` r ) ` N ) ) ) $=
( vb va vk cv co c1 wceq cexp cfv clt wbr cmin cmul cdvds vh vc cgcd codz
c2 clogb wa cfl cfz cprod wn crab cr cinf oveq2 oveq1d cbvprodv oveq2i id
wcel a1i breq12d notbid cbvrabv infeq1i simpld adantl eqeq1d fveq2 fveq1d
aks4d1p4 breq2d anbi12d aks4d1p8 aks4d1p9 jca rspcedvd ) ACDJZUCKZLMZUECU
FKUENKZCVRUDOZOZPQZUGCUAJZCUEBUFKUHONKZLWAUHOUIKZCUBJZNKZLRKZUBUJZSKZTQZU
KZUALBUIKZULZUMPUNZUCKZLMZWACWQUDOZOZPQZUGDWQWOAWQWOUTWQWFWGCGJZNKZLRKZGU
JZSKZTQUKAXGBWQHCIEXFWGCHJZNKZLRKZHUJWFSWGXEXJGHXCXHMXDXILRXCXHCNUOUPUQUR
ZFUMWPIJZXGTQZUKZIWOULPWNXNUAIWOWEXLMZWMXMXOWEXLWLXGTXOUSWLXGMXOWKXFWFSWG
WJXEUBGWHXCMWIXDLRWHXCCNUOUPUQURVAVBVCVDVEZVKVFAVRWQMZUGZVTWSWDXBXRVSWRLX
QVSWRMAVRWQCUCUOVGVHXRWCXAWAPXRCWBWTXQWBWTMAVRWQUDVIVGVJVLVMAWSXBAXGBWQHC
IEXKFXPVNAXGBWQHCIEXKFXPVOVPVQ $.
$}

${
$( The value of 5 choose 2. (Contributed by metakunt, 8-Jun-2024.) $)
5bc2eq10 $p |- ( 5 _C 2 ) = ; 1 0 $=
Expand Down
Loading