Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions src/api.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,10 +19,14 @@

@app.post("/predict/")
async def predict(file: UploadFile = File(...)):
# Preprocess the image
image = Image.open(file.file).convert("L")
image = transform(image)
image = image.unsqueeze(0) # Add batch dimension

# Make a prediction with the loaded model
with torch.no_grad():
output = model(image)
_, predicted = torch.max(output.data, 1)

return {"prediction": int(predicted[0])}
45 changes: 26 additions & 19 deletions src/main.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,16 +6,28 @@
from torch.utils.data import DataLoader
import numpy as np

# Step 1: Load MNIST Data and Preprocess
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
class MNISTTrainer:
def __init__(self):
# Load and preprocess MNIST data
self.transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])

self.trainset = datasets.MNIST('.', download=True, train=True, transform=self.transform)
self.trainloader = DataLoader(self.trainset, batch_size=64, shuffle=True)

trainset = datasets.MNIST('.', download=True, train=True, transform=transform)
trainloader = DataLoader(trainset, batch_size=64, shuffle=True)
def train(self, model, optimizer, criterion, epochs):
# Training loop
for epoch in range(epochs):
for images, labels in self.trainloader:
optimizer.zero_grad()
output = model(images)
loss = criterion(output, labels)
loss.backward()
optimizer.step()
print(f'Epoch {epoch+1}/{epochs} Loss: {loss.item()}')

# Step 2: Define the PyTorch Model
class Net(nn.Module):
def __init__(self):
super().__init__()
Expand All @@ -30,19 +42,14 @@ def forward(self, x):
x = self.fc3(x)
return nn.functional.log_softmax(x, dim=1)

# Step 3: Train the Model
def train(self, optimizer, criterion, epochs):
trainer = MNISTTrainer()
trainer.train(self, optimizer, criterion, epochs)

# Train the model
model = Net()
optimizer = optim.SGD(model.parameters(), lr=0.01)
criterion = nn.NLLLoss()

# Training loop
epochs = 3
for epoch in range(epochs):
for images, labels in trainloader:
optimizer.zero_grad()
output = model(images)
loss = criterion(output, labels)
loss.backward()
optimizer.step()
model.train(optimizer, criterion, 3)

torch.save(model.state_dict(), "mnist_model.pth")