Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

map legacy sleap config file to new sleapnn config #162

Open
wants to merge 17 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
56 changes: 56 additions & 0 deletions sleap_nn/config/data_config.py
Original file line number Diff line number Diff line change
Expand Up @@ -185,3 +185,59 @@ class DataConfig:
use_augmentations_train: bool = False
augmentation_config: Optional[AugmentationConfig] = None
skeletons: Optional[dict] = None

def data_mapper(legacy_config: dict) -> DataConfig:
return DataConfig(
# train_labels_path=legacy_config.get("train_labels_path", MISSING),
# val_labels_path=legacy_config.get("val_labels_path", MISSING),
# test_file_path=legacy_config.get("test_file_path"),
# provider=legacy_config.get("provider", "LabelsReader"),
# user_instances_only=legacy_config.get("user_instances_only", True),
# data_pipeline_fw=legacy_config.get("data_pipeline_fw", "torch_dataset"),
# np_chunks_path=legacy_config.get("np_chunks_path"),
# litdata_chunks_path=legacy_config.get("litdata_chunks_path"),
# use_existing_chunks=legacy_config.get("use_existing_chunks", False),
# chunk_size=int(legacy_config.get("chunk_size", 100)),
# delete_chunks_after_training=legacy_config.get("delete_chunks_after_training", True),
preprocessing=PreprocessingConfig(
is_rgb=legacy_config.get("data", {}).get("preprocessing", {}).get("ensure_rgb", False),
max_height=legacy_config.get("data", {}).get("preprocessing", {}).get("target_height"),
max_width=legacy_config.get("data", {}).get("preprocessing", {}).get("target_width"),
scale=legacy_config.get("data", {}).get("preprocessing", {}).get("input_scaling", 1.0),
crop_hw=legacy_config.get("data", {}).get("preprocessing", {}).get("crop_size"),
min_crop_size=legacy_config.get("data", {}).get("preprocessing", {}).get("crop_size_detection_padding", 100),
),
# use_augmentations_train=legacy_config.get("use_augmentations_train", False),
augmentation_config=AugmentationConfig(
intensity=IntensityConfig(
uniform_noise_min=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("uniform_noise_min_val", 0.0),
uniform_noise_max=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("uniform_noise_max_val", 1.0),
uniform_noise_p=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("uniform_noise", 1.0),
gaussian_noise_mean=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("gaussian_noise_mean", 0.0),
gaussian_noise_std=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("gaussian_noise_stddev", 1.0),
gaussian_noise_p=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("gaussian_noise", 1.0),
contrast_min=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("contrast_min_gamma", 0.5),
contrast_max=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("contrast_max_gamma", 2.0),
contrast_p=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("contrast", 1.0),
brightness=(legacy_config.get("optimization", {}).get("augmentation_config", {}).get("brightness_min_val", 1.0),
legacy_config.get("optimization", {}).get("augmentation_config", {}).get("brightness_max_val", 1.0)),
brightness_p=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("brightness", 1.0),
),
geometric=GeometricConfig(
rotation=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("rotation_max_angle", 180.0),
scale=(legacy_config.get("optimization", {}).get("augmentation_config", {}).get("scale_min", None),
legacy_config.get("optimization", {}).get("augmentation_config", {}).get("scale_max", None)),
# translate_width=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("translate_width", 0.2),
# translate_height=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("translate_height", 0.2),
# affine_p=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("affine_p", 0.0),
# erase_scale_min=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("erase_scale_min", 0.0001),
# erase_scale_max=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("erase_scale_max", 0.01),
# erase_ratio_min=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("erase_ratio_min", 1.0),
# erase_ratio_max=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("erase_ratio_max", 1.0),
# erase_p=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("erase_p", 0.0),
# mixup_lambda=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("mixup_lambda", [0.01, 0.05]),
# mixup_p=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("mixup_p", 0.0),
)
) if legacy_config.get("use_augmentations_train", False) else None,
skeletons=legacy_config.get("skeletons"),
)
46 changes: 46 additions & 0 deletions sleap_nn/config/model_config.py
Original file line number Diff line number Diff line change
Expand Up @@ -832,3 +832,49 @@ def validate_pre_trained_weights(self, value):
message = "UNet does not support pre-trained weights."
logger.error(message)
raise ValueError(message)

def model_mapper(legacy_config: dict) -> ModelConfig:
return ModelConfig(
init_weights=legacy_config.get("init_weights", "default"),
# pre_trained_weights not in old config
# pretrained_backbone_weights not in old config
# pretrained_head_weights not in old config
backbone_config=BackboneConfig(
unet=UNetConfig(
# in_channels=legacy_config.get("backbone", {}).get("in_channels", 1),
# kernel_size=legacy_config.get("backbone", {}).get("kernel_size", 3),
filters=legacy_config.get("backbone", {}).get("filters", 32),
filters_rate=legacy_config.get("backbone", {}).get("filters_rate", 1.5),
max_stride=legacy_config.get("backbone", {}).get("max_stride", 16),
stem_stride=None, # stem_stride not in legacy
middle_block=legacy_config.get("backbone", {}).get("middle_block", True),
up_interpolate=legacy_config.get("backbone", {}).get("up_interpolate", True),
stacks=legacy_config.get("backbone", {}).get("stacks", 1),
convs_per_block=2,
output_stride=legacy_config.get("backbone", {}).get("output_stride", 1),
) if legacy_config.get("backbone_type") == "unet" else None,
# convnext not in old config
# swint not in old config
),
head_configs=HeadConfig(
single_instance=SingleInstanceConfig(
confmaps=SingleInstanceConfMapsConfig(
part_names=legacy_config.get("heads", {}).get("part_names"),
sigma=legacy_config.get("heads", {}).get("sigma", 5.0),
output_stride=legacy_config.get("heads", {}).get("output_stride", 1),
)
) if legacy_config.get("head_type") == "single_instance" else None,
centroid = CentroidConfig(
confmaps = CentroidConfMapsConfig(
anchor_part = legacy_config.get("CentroidsHeadConfig",{}).get("anchor_part"),
sigma = legacy_config.get("CentroidsHeadConfig",{}).get("sigma"),
output_stride = legacy_config.get("CentroidsHeadConfig",{}).get("output_stride"),
)
)

# Other head types not in old config
# centered_instance=None,
# bottomup=None,
),
# total_params calculated during training
)
14 changes: 14 additions & 0 deletions sleap_nn/config/training_job_config.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,9 +28,13 @@
from typing import Text, Optional
from omegaconf import OmegaConf
import sleap_nn
import json
from sleap_nn.config.data_config import DataConfig
from sleap_nn.config.data_config import data_mapper
from sleap_nn.config.model_config import ModelConfig
from sleap_nn.config.model_config import model_mapper
from sleap_nn.config.trainer_config import TrainerConfig
from sleap_nn.config.trainer_config import trainer_mapper
from sleap_nn.config.utils import get_output_strides_from_heads


Expand Down Expand Up @@ -146,3 +150,13 @@ def load_config(filename: Text, load_training_config: bool = True) -> OmegaConf:
The parsed `OmegaConf`.
"""
return TrainingJobConfig.load_yaml(filename)

def load_sleap_config(cls, json_file_path: str) -> TrainerConfig:
with open(json_file_path, "r") as f:
old_config = json.load(f)

data_config = data_mapper(old_config)
model_config = model_mapper(old_config)
trainer_config = trainer_mapper(old_config)

return cls(data_config=data_config, model_config=model_config, trainer_config=trainer_config)
Loading