Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

map legacy sleap config file to new sleapnn config #162

Open
wants to merge 17 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 10 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
115 changes: 115 additions & 0 deletions sleap_nn/config/data_config.py
Original file line number Diff line number Diff line change
Expand Up @@ -185,3 +185,118 @@ class DataConfig:
use_augmentations_train: bool = False
augmentation_config: Optional[AugmentationConfig] = None
skeletons: Optional[dict] = None


def data_mapper(legacy_config: dict) -> DataConfig:
return DataConfig(
train_labels_path=legacy_config.get("data", {})
.get("labels", {})
.get("training_labels", MISSING),
val_labels_path=legacy_config.get("data", {})
.get("labels", {})
.get("validation_labels", MISSING),
test_file_path=legacy_config.get("data", {})
.get("labels", {})
.get("test_labels"),
# provider=legacy_config.get("provider", "LabelsReader"),
# user_instances_only=legacy_config.get("user_instances_only", True),
# data_pipeline_fw=legacy_config.get("data_pipeline_fw", "torch_dataset"),
# np_chunks_path=legacy_config.get("np_chunks_path"),
# litdata_chunks_path=legacy_config.get("litdata_chunks_path"),
# use_existing_chunks=legacy_config.get("use_existing_chunks", False),
# chunk_size=int(legacy_config.get("chunk_size", 100)),
# delete_chunks_after_training=legacy_config.get("delete_chunks_after_training", True),
preprocessing=PreprocessingConfig(
is_rgb=legacy_config.get("data", {})
.get("preprocessing", {})
.get("ensure_rgb", False),
max_height=legacy_config.get("data", {})
.get("preprocessing", {})
.get("target_height"),
max_width=legacy_config.get("data", {})
.get("preprocessing", {})
.get("target_width"),
scale=legacy_config.get("data", {})
.get("preprocessing", {})
.get("input_scaling", 1.0),
crop_hw=legacy_config.get("data", {})
.get("preprocessing", {})
.get("crop_size"),
min_crop_size=legacy_config.get("data", {})
.get("preprocessing", {})
.get("crop_size_detection_padding", 100),
),
# use_augmentations_train=legacy_config.get("use_augmentations_train", False),
augmentation_config=(
AugmentationConfig(
intensity=IntensityConfig(
uniform_noise_min=legacy_config.get("optimization", {})
.get("augmentation_config", {})
.get("uniform_noise_min_val", 0.0),
uniform_noise_max=legacy_config.get("optimization", {})
.get("augmentation_config", {})
.get("uniform_noise_max_val", 100.0)
/ 100.0,
uniform_noise_p=legacy_config.get("optimization", {})
.get("augmentation_config", {})
.get("uniform_noise", 1.0),
gaussian_noise_mean=legacy_config.get("optimization", {})
.get("augmentation_config", {})
.get("gaussian_noise_mean", 0.0),
gaussian_noise_std=legacy_config.get("optimization", {})
.get("augmentation_config", {})
.get("gaussian_noise_stddev", 1.0),
gaussian_noise_p=legacy_config.get("optimization", {})
.get("augmentation_config", {})
.get("gaussian_noise", 1.0),
contrast_min=legacy_config.get("optimization", {})
.get("augmentation_config", {})
.get("contrast_min_gamma", 0.5),
contrast_max=legacy_config.get("optimization", {})
.get("augmentation_config", {})
.get("contrast_max_gamma", 2.0),
contrast_p=legacy_config.get("optimization", {})
.get("augmentation_config", {})
.get("contrast", 1.0),
brightness=(
legacy_config.get("optimization", {})
.get("augmentation_config", {})
.get("brightness_min_val", 1.0),
legacy_config.get("optimization", {})
.get("augmentation_config", {})
.get("brightness_max_val", 1.0),
),
brightness_p=legacy_config.get("optimization", {})
.get("augmentation_config", {})
.get("brightness", 1.0),
),
geometric=GeometricConfig(
rotation=legacy_config.get("optimization", {})
.get("augmentation_config", {})
.get("rotation_max_angle", 180.0),
scale=(
legacy_config.get("optimization", {})
.get("augmentation_config", {})
.get("scale_min", None),
legacy_config.get("optimization", {})
.get("augmentation_config", {})
.get("scale_max", None),
),
# translate_width=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("translate_width", 0.2),
# translate_height=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("translate_height", 0.2),
# affine_p=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("affine_p", 0.0),
# erase_scale_min=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("erase_scale_min", 0.0001),
# erase_scale_max=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("erase_scale_max", 0.01),
# erase_ratio_min=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("erase_ratio_min", 1.0),
# erase_ratio_max=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("erase_ratio_max", 1.0),
# erase_p=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("erase_p", 0.0),
# mixup_lambda=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("mixup_lambda", [0.01, 0.05]),
# mixup_p=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("mixup_p", 0.0),
),
)
# if legacy_config.get("use_augmentations_train", False)
# else None
),
use_augmentations_train=True,
skeletons=legacy_config.get("data", {}).get("labels", {}).get("skeletons"),
)
168 changes: 168 additions & 0 deletions sleap_nn/config/model_config.py
Original file line number Diff line number Diff line change
Expand Up @@ -832,3 +832,171 @@ def validate_pre_trained_weights(self, value):
message = "UNet does not support pre-trained weights."
logger.error(message)
raise ValueError(message)


def model_mapper(legacy_config: dict) -> ModelConfig:
return ModelConfig(
# init_weights=legacy_config.get("init_weights", "default"),
# pre_trained_weights not in old config
# pretrained_backbone_weights=legacy_config.get("PretrainedEncoderConfig")?? # i think its different
# pretrained_head_weights not in old config
backbone_config=BackboneConfig(
unet=(
UNetConfig(
# in_channels=legacy_config.get("backbone", {}).get("in_channels", 1),
# kernel_size=legacy_config.get("backbone", {}).get("kernel_size", 3),
filters=legacy_config.get("model", {})
.get("backbone", {})
.get("unet", {})
.get("filters", 32),
filters_rate=legacy_config.get("model", {})
.get("backbone", {})
.get("unet", {})
.get("filters_rate", 1.5),
max_stride=legacy_config.get("model", {})
.get("backbone", {})
.get("unet", {})
.get("max_stride", 16),
stem_stride=legacy_config.get("model", {})
.get("backbone", {})
.get("unet", {})
.get("stem_stride", 16),
middle_block=legacy_config.get("model", {})
.get("backbone", {})
.get("unet", {})
.get("middle_block", True),
up_interpolate=legacy_config.get("model", {})
.get("backbone", {})
.get("unet", {})
.get("up_interpolate", True),
stacks=legacy_config.get("model", {})
.get("backbone", {})
.get("unet", {})
.get("stacks", 1),
# convs_per_block=2,
output_stride=legacy_config.get("model", {})
.get("backbone", {})
.get("unet", {})
.get("output_stride", 1),
)
if legacy_config.get("model", {}).get("backbone", {}).get("unet")
else None
),
# convnext not in old config
# swint not in old config
),
head_configs=HeadConfig(
single_instance=(
(
SingleInstanceConfig(
confmaps=SingleInstanceConfMapsConfig(
part_names=legacy_config.get("model", {})
.get("heads", {})
.get("single_instance", {})
.get("part_names"),
sigma=legacy_config.get("model", {})
.get("heads", {})
.get("single_instance", {})
.get("sigma", 5.0),
output_stride=legacy_config.get("model", {})
.get("heads", {})
.get("single_instance", {})
.get("output_stride", 1),
)
)
)
if legacy_config.get("model", {})
.get("heads", {})
.get("single_instance")
else None
),
centroid=(
CentroidConfig(
confmaps=CentroidConfMapsConfig(
anchor_part=legacy_config.get("model", {})
.get("heads", {})
.get("centroid", {})
.get("anchor_part"),
sigma=legacy_config.get("model", {})
.get("heads", {})
.get("centroid", {})
.get("sigma", 5.0),
output_stride=legacy_config.get("model", {})
.get("heads", {})
.get("centroid", {})
.get("output_stride", 1),
)
)
if legacy_config.get("model", {}).get("heads", {}).get("centroid")
else None
),
centered_instance=(
CenteredInstanceConfig(
confmaps=CentroidConfMapsConfig(
anchor_part=legacy_config.get("model", {})
.get("heads", {})
.get("centered_instance", {})
.get("anchor_part"),
sigma=legacy_config.get("model", {})
.get("heads", {})
.get("centered_instance", {})
.get("sigma", 5.0),
output_stride=legacy_config.get("model", {})
.get("heads", {})
.get("centered_instance", {})
.get("output_stride", 1),
part_names=legacy_config.get("model", {})
.get("heads", {})
.get("centered_instance", {})
.get("part_names", None),
)
)
if legacy_config.get("model", {})
.get("heads", {})
.get("centered_instance")
else None
),
bottomup=(
BottomUpConfig(
confmaps=BottomUpConfMapsConfig(
loss_weight=legacy_config.get("model", {})
.get("heads", {})
.get("multi_instance", {})
.get("loss_weight", None),
sigma=legacy_config.get("model", {})
.get("heads", {})
.get("multi_instance", {})
.get("sigma", 5.0),
output_stride=legacy_config.get("model", {})
.get("heads", {})
.get("multi_instance", {})
.get("output_stride", 1),
part_names=legacy_config.get("model", {})
.get("heads", {})
.get("multi_instance", {})
.get("part_names", None),
),
pafs=PAFConfig(
edges=legacy_config.get("model", {})
.get("heads", {})
.get("multi_instance", {})
.get("edges", None),
sigma=legacy_config.get("model", {})
.get("heads", {})
.get("multi_instance", {})
.get("sigma", 15.0),
output_stride=legacy_config.get("model", {})
.get("heads", {})
.get("multi_instance", {})
.get("output_stride", 1),
loss_weight=legacy_config.get("model", {})
.get("heads", {})
.get("multi_instance", {})
.get("loss_weight", None),
),
)
if legacy_config.get("model", {}).get("heads", {}).get("multi_instance")
else None
),
),
)
Loading
Loading