-
Notifications
You must be signed in to change notification settings - Fork 128
components text_generation_pipeline_singularity_premium_medium
Pipeline component for text generation
Version: 0.0.67
View in Studio: https://ml.azure.com/registries/azureml/components/text_generation_pipeline_singularity_premium_medium/version/0.0.67
Compute parameters
Name | Description | Type | Default | Optional | Enum |
---|---|---|---|---|---|
instance_type_model_import | Instance type to be used for model_import component in case of virtual cluster compute, eg. Singularity.D8_v3. The parameter compute_model_import must be set to 'virtual cluster' for instance_type to be used | string | Singularity.D8_v3 | True | |
instance_type_preprocess | Instance type to be used for model_import component in case of virtual cluster compute, eg. Singularity.D8_v3. The parameter compute_model_import must be set to 'virtual cluster' for instance_type to be used | string | Singularity.D8_v3 | True | |
instance_type_finetune | Instance type to be used for finetune component in case of virtual cluster compute, eg. Singularity.ND40_v2. The parameter compute_finetune must be set to 'virtual cluster' for instance_type to be used | string | Singularity.ND40_v2 | True |
instance_type_model_evaluation: type: string optional: true default: Singularity.ND40_v2 description: Instance type to be used for finetune component in case of virtual cluster compute, eg. Singularity.ND40_v2. The parameter compute_finetune must be set to 'virtual cluster' for instance_type to be used
Name | Description | Type | Default | Optional | Enum |
---|---|---|---|---|---|
num_nodes_finetune | number of nodes to be used for finetuning (used for distributed training) | integer | 1 | True | |
number_of_gpu_to_use_finetuning | number of gpus to be used per node for finetuning, should be equal to number of gpu per node in the compute SKU used for finetune | integer | 1 | True |
ModelSelector parameters
Name | Description | Type | Default | Optional | Enum |
---|---|---|---|---|---|
huggingface_id | Input HuggingFace model id. Incase of continual finetuning provide proper id. Models from Hugging Face are subject to third party license terms available on the Hugging Face model details page. It is your responsibility to comply with the model's license terms. | string | True |
Continual-Finetuning model path
Name | Description | Type | Default | Optional | Enum |
---|---|---|---|---|---|
pytorch_model_path | Pytorch model asset path. Special characters like \ and ' are invalid in the parameter value. | custom_model | True | ||
mlflow_model_path | MLflow model asset path. Special characters like \ and ' are invalid in the parameter value. | mlflow_model | True |
Preprocessing parameters
Name | Description | Type | Default | Optional | Enum |
---|---|---|---|---|---|
task_name | TextGeneration task type | string | TextGeneration | False | ['TextGeneration'] |
text_key | key for text in an example. format your data keeping in mind that text is concatenated with ground_truth while finetuning in the form - text + groundtruth. for eg. "text"="knock knock\n", "ground_truth"="who's there"; will be treated as "knock knock\nwho's there" | string | False | ||
ground_truth_key | key for ground_truth in an example. we take separate column for ground_truth to enable use cases like summarization, translation, question_answering, etc. which can be repurposed in form of text-generation where both text and ground_truth are needed. This separation is useful for calculating metrics. for eg. "text"="Summarize this dialog:\n{input_dialogue}\nSummary:\n", "ground_truth"="{summary of the dialogue}" | string | True | ||
batch_size | Number of examples to batch before calling the tokenization function | integer | 1000 | True | |
pad_to_max_length | If set to True, the returned sequences will be padded according to the model's padding side and padding index, up to their max_seq_length . If no max_seq_length is specified, the padding is done up to the model's max length. |
string | false | True | ['true', 'false'] |
max_seq_length | Default is -1 which means the padding is done up to the model's max length. Else will be padded to max_seq_length . |
integer | -1 | True |
Dataset path Parameters
Name | Description | Type | Default | Optional | Enum |
---|---|---|---|---|---|
train_file_path | Path to the registered training data asset. The supported data formats are jsonl , json , csv , tsv and parquet . Special characters like \ and ' are invalid in the parameter value. |
uri_file | True | ||
validation_file_path | Path to the registered validation data asset. The supported data formats are jsonl , json , csv , tsv and parquet . Special characters like \ and ' are invalid in the parameter value. |
uri_file | True | ||
test_file_path | Path to the registered test data asset. The supported data formats are jsonl , json , csv , tsv and parquet . Special characters like \ and ' are invalid in the parameter value. |
uri_file | True | ||
train_mltable_path | Path to the registered training data asset in mltable format. Special characters like \ and ' are invalid in the parameter value. |
mltable | True | ||
validation_mltable_path | Path to the registered validation data asset in mltable format. Special characters like \ and ' are invalid in the parameter value. |
mltable | True | ||
test_mltable_path | Path to the registered test data asset in mltable format. Special characters like \ and ' are invalid in the parameter value. |
mltable | True |
Finetuning parameters Lora parameters
Name | Description | Type | Default | Optional | Enum |
---|---|---|---|---|---|
apply_lora | lora enabled | string | false | True | ['true', 'false'] |
merge_lora_weights | if set to true, the lora trained weights will be merged to base model before saving | string | true | True | ['true', 'false'] |
lora_alpha | lora attention alpha | integer | 128 | True | |
lora_r | lora dimension | integer | 8 | True | |
lora_dropout | lora dropout value | number | 0.0 | True |
Training parameters
Name | Description | Type | Default | Optional | Enum |
---|---|---|---|---|---|
num_train_epochs | training epochs | integer | 1 | True | |
max_steps | If set to a positive number, the total number of training steps to perform. Overrides 'epochs'. In case of using a finite iterable dataset the training may stop before reaching the set number of steps when all data is exhausted. | integer | -1 | True | |
per_device_train_batch_size | Train batch size | integer | 1 | True | |
per_device_eval_batch_size | Validation batch size | integer | 1 | True | |
auto_find_batch_size | Flag to enable auto finding of batch size. If the provided 'per_device_train_batch_size' goes into Out Of Memory (OOM) enabling auto_find_batch_size will find the correct batch size by iteratively reducing 'per_device_train_batch_size' by a factor of 2 till the OOM is fixed | string | false | True | ['true', 'false'] |
optim | Optimizer to be used while training | string | adamw_hf | True | ['adamw_hf', 'adamw_torch', 'adafactor'] |
learning_rate | Start learning rate. Defaults to linear scheduler. | number | 2e-05 | True | |
warmup_steps | Number of steps used for a linear warmup from 0 to learning_rate | integer | 0 | True | |
weight_decay | The weight decay to apply (if not zero) to all layers except all bias and LayerNorm weights in AdamW optimizer | number | 0.0 | True | |
adam_beta1 | The beta1 hyperparameter for the AdamW optimizer | number | 0.9 | True | |
adam_beta2 | The beta2 hyperparameter for the AdamW optimizer | number | 0.999 | True | |
adam_epsilon | The epsilon hyperparameter for the AdamW optimizer | number | 1e-08 | True | |
gradient_accumulation_steps | Number of updates steps to accumulate the gradients for, before performing a backward/update pass | integer | 1 | True | |
eval_accumulation_steps | Number of predictions steps to accumulate before moving the tensors to the CPU, will be passed as None if set to -1 | integer | -1 | True | |
lr_scheduler_type | learning rate scheduler to use. | string | linear | True | ['linear', 'cosine', 'cosine_with_restarts', 'polynomial', 'constant', 'constant_with_warmup'] |
precision | Apply mixed precision training. This can reduce memory footprint by performing operations in half-precision. | string | 32 | True | ['32', '16'] |
seed | Random seed that will be set at the beginning of training | integer | 42 | True | |
enable_full_determinism | Ensure reproducible behavior during distributed training | string | false | True | ['true', 'false'] |
dataloader_num_workers | Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process. | integer | 0 | True | |
ignore_mismatched_sizes | Whether or not to raise an error if some of the weights from the checkpoint do not have the same size as the weights of the model | string | true | True | ['true', 'false'] |
max_grad_norm | Maximum gradient norm (for gradient clipping) | number | 1.0 | True | |
evaluation_strategy | The evaluation strategy to adopt during training | string | epoch | True | ['epoch', 'steps'] |
evaluation_steps_interval | The evaluation steps in fraction of an epoch steps to adopt during training. Overwrites evaluation_steps if not 0. | number | 0.0 | True | |
eval_steps | Number of update steps between two evals if evaluation_strategy='steps' | integer | 500 | True | |
logging_strategy | The logging strategy to adopt during training. | string | steps | True | ['epoch', 'steps'] |
logging_steps | Number of update steps between two logs if logging_strategy='steps' | integer | 10 | True | |
metric_for_best_model | Specify the metric to use to compare two different models | string | loss | True | ['loss'] |
resume_from_checkpoint | Loads Optimizer, Scheduler and Trainer state for finetuning if true | string | false | True | ['true', 'false'] |
save_total_limit | If a value is passed, will limit the total amount of checkpoints. Deletes the older checkpoints in output_dir. If the value is -1 saves all checkpoints | integer | -1 | True |
Early Stopping Parameters
Name | Description | Type | Default | Optional | Enum |
---|---|---|---|---|---|
apply_early_stopping | Enable early stopping | string | false | True | ['true', 'false'] |
early_stopping_patience | Stop training when the specified metric worsens for early_stopping_patience evaluation calls | integer | 1 | True | |
early_stopping_threshold | Denotes how much the specified metric must improve to satisfy early stopping conditions | number | 0.0 | True |
Deepspeed Parameters
Name | Description | Type | Default | Optional | Enum |
---|---|---|---|---|---|
apply_deepspeed | If set to true, will enable deepspeed for training | string | false | True | ['true', 'false'] |
deepspeed | Deepspeed config to be used for finetuning | uri_file | True | ||
deepspeed_stage | This parameter configures which DEFAULT deepspeed config to be used - stage2 or stage3. The default choice is stage2. Note that, this parameter is ONLY applicable when user doesn't pass any config information via deepspeed port. | string | 2 | True | ['2', '3'] |
ORT Parameters
Name | Description | Type | Default | Optional | Enum |
---|---|---|---|---|---|
apply_ort | If set to true, will use the ONNXRunTime training | string | false | True | ['true', 'false'] |
Model Evaluation parameters evaluation_config: type: uri_file optional: true description: Additional parameters for Computing Metrics. Special characters like \ and ' are invalid in the parameter value. evaluation_config_params: type: string optional: true description: Additional parameters as JSON serielized string Validation parameters
Name | Description | Type | Default | Optional | Enum |
---|---|---|---|---|---|
system_properties | Validation parameters propagated from pipeline. | string | True |
Compute parameters
Name | Description | Type | Default | Optional | Enum |
---|---|---|---|---|---|
compute_model_import | compute to be used for model_import eg. provide 'FT-Cluster' if your compute is named 'FT-Cluster'. Special characters like \ and ' are invalid in the parameter value. If compute cluster name is provided, instance_type field will be ignored and the respective cluster will be used | string | virtual cluster | True | |
compute_preprocess | compute to be used for preprocess eg. provide 'FT-Cluster' if your compute is named 'FT-Cluster'. Special characters like \ and ' are invalid in the parameter value. If compute cluster name is provided, instance_type field will be ignored and the respective cluster will be used | string | virtual cluster | True | |
compute_finetune | compute to be used for finetune eg. provide 'FT-Cluster' if your compute is named 'FT-Cluster'. Special characters like \ and ' are invalid in the parameter value. If compute cluster name is provided, instance_type field will be ignored and the respective cluster will be used | string | virtual cluster | True |
compute_model_evaluation: type: string optional: true default: 'virtual cluster' description: >- compute to be used for model_eavaluation eg. provide 'FT-Cluster' if your compute is named 'FT-Cluster'. Special characters like \ and ' are invalid in the parameter value. If compute cluster name is provided, instance_type field will be ignored and the respective cluster will be used
Name | Description | Type | Default | Optional | Enum |
---|
Name | Description | Type |
---|---|---|
pytorch_model_folder | output folder containing best model as defined by metric_for_best_model. Along with the best model, output folder contains checkpoints saved after every evaluation which is defined by the evaluation_strategy. Each checkpoint contains the model weight(s), config, tokenizer, optimzer, scheduler and random number states. | uri_folder |
mlflow_model_folder | output folder containing best finetuned model in mlflow format. | mlflow_model |
evaluation_result: type: uri_folder description: Test Data Evaluation Results mode: rw_mount
Name | Description | Type |
---|