-
Notifications
You must be signed in to change notification settings - Fork 127
environments ai ml automl
github-actions[bot] edited this page Dec 17, 2024
·
18 revisions
An environment used by Azure ML AutoML for training models.
Version: 14
OS : Ubuntu20.04
Training
Preview
OpenMpi : 4.1.0
Python : 3.9
View in Studio: https://ml.azure.com/registries/azureml/environments/ai-ml-automl/version/14
Docker image: mcr.microsoft.com/azureml/curated/ai-ml-automl:14
FROM mcr.microsoft.com/azureml/openmpi4.1.0-ubuntu20.04:20241215.v1
ENV AZUREML_CONDA_ENVIRONMENT_PATH /azureml-envs/azureml-automl
ENV PATH $AZUREML_CONDA_ENVIRONMENT_PATH/bin:$PATH
COPY --from=mcr.microsoft.com/azureml/mlflow-ubuntu20.04-py38-cpu-inference:20230306.v3 /var/mlflow_resources/mlflow_score_script.py /var/mlflow_resources/mlflow_score_script.py
ENV MLFLOW_MODEL_FOLDER="mlflow-model"
# ENV AML_APP_ROOT="/var/mlflow_resources"
# ENV AZUREML_ENTRY_SCRIPT="mlflow_score_script.py"
ENV ENABLE_METADATA=true
# begin conda create
# Create conda environment
RUN conda create -p $AZUREML_CONDA_ENVIRONMENT_PATH \
python=3.9 \
# begin conda dependencies
pip \
py-cpuinfo=5.0.0 \
joblib=1.2.0 \
setuptools-git \
'psutil>5.0.0,<6.0.0' \
pytorch=2.2.2 \
# end conda dependencies
-c conda-forge -c pytorch -c anaconda -c nvidia && \
conda run -p $AZUREML_CONDA_ENVIRONMENT_PATH && \
conda clean -a -y
# end conda create
# begin pip install
# Install pip dependencies
RUN pip install \
# begin pypi dependencies
azureml-core==1.59.0 \
azureml-mlflow==1.59.0 \
azureml-pipeline-core==1.59.0 \
azureml-telemetry==1.59.0 \
azureml-interpret==1.59.0 \
azureml-responsibleai==1.59.0 \
azureml-automl-core==1.59.0 \
azureml-automl-runtime==1.59.0 \
azureml-train-automl-client==1.59.0 \
azureml-train-automl-runtime==1.59.0 \
azureml-train-automl==1.59.0 \
azureml-dataset-runtime==1.59.0 \
azureml-defaults==1.59.0 \
# TODO: replace the hard coded above by a referenceto azureml-train-automl[tabular]
'mlflow-skinny==2.15.1' \
'xgboost==1.5.2' \
'prophet==1.1.4' \
'inference-schema' \
'mltable>=1.0.0'
# end pypi dependencies
# end pip install
# begin pip ad-hoc
# Install pip ad-hoc dependencies for security updates
RUN pip install --upgrade 'pyarrow==14.0.2'
# end pip ad-hoc