-
Notifications
You must be signed in to change notification settings - Fork 130
components mmtracking_video_multi_object_tracking_pipeline
Pipeline component for multi-object tracking using MMTracking models.
Version: 0.0.14
View in Studio: https://ml.azure.com/registries/azureml/components/mmtracking_video_multi_object_tracking_pipeline/version/0.0.14
Name | Description | Type | Default | Optional | Enum |
---|---|---|---|---|---|
compute_model_import | Compute to be used for model_import eg. provide 'FT-Cluster' if your compute is named 'FT-Cluster'. | string | False | ||
compute_finetune | Compute to be used for finetune eg. provide 'FT-Cluster' if your compute is named 'FT-Cluster'. | string | False |
Model Selector Component Model family
Name | Description | Type | Default | Optional | Enum |
---|---|---|---|---|---|
model_family | Which framework the model belongs to. | string | MmTrackingVideo | True | ['MmTrackingVideo'] |
model_name | Please select models from AzureML Model Assets for all supported models. For MMTracking, provide the model's config name here, same as its specified in MMTracking Model Zoo. To find the correct model name, go to https://github.com/open-mmlab/mmtracking/tree/v0.14.0/configs/mot click on the model type and you will find the model name in the metafile.yml file which is present at configs/<MODEL_TYPE>/metafile.yml location. It is the user responsibility to comply with the model's license terms. | string | True | ||
pytorch_model | Pytorch Model registered in AzureML Asset. | custom_model | True | ||
mlflow_model | Mlflow Model registered in AzureML Asset. | mlflow_model | True | ||
download_from_source | Download model directly from MmTracking instead of system registry | boolean | False | True |
Finetuning Component component input: training mltable
Name | Description | Type | Default | Optional | Enum |
---|---|---|---|---|---|
training_data | Path to the mltable of the training dataset. | mltable | False |
optional component input: validation mltable
Name | Description | Type | Default | Optional | Enum |
---|---|---|---|---|---|
validation_data | Path to the mltable of the validation dataset. | mltable | True | ||
image_width | Image width that is input to the network. Default is -1 which means it would be overwritten by image_scale in model config. | integer | -1 | True | |
image_height | Image height that is input to the network. Default is -1 which means it would be overwritten by image_scale in model config. | integer | -1 | True | |
task_name | Which task the model is solving. | string | ['video-multi-object-tracking'] |
primary metric todo: add MOTA/ MOTP when the metrics are avaialble
Name | Description | Type | Default | Optional | Enum |
---|---|---|---|---|---|
metric_for_best_model | Specify the metric to use to compare two different models. If left empty, will be chosen automatically based on the task type and model selected. | string | True | ['mean_average_precision', 'precision', 'recall', 'MOTA', 'MOTP', 'IDF1'] |
Training parameters
Name | Description | Type | Default | Optional | Enum |
---|---|---|---|---|---|
number_of_workers | Number of subprocesses to use for data loading (PyTorch only). 0 means that the data will be loaded in the main process. | integer | 8 | True | |
number_of_epochs | Number of training epochs. If left empty, will be chosen automatically based on the task type and model selected. | integer | True | ||
max_steps | If set to a positive number, the total number of training steps to perform. Overrides 'number_of_epochs'. In case of using a finite iterable dataset the training may stop before reaching the set number of steps when all data is exhausted. If left empty, will be chosen automatically based on the task type and model selected. | integer | True | ||
training_batch_size | Train batch size. If left empty, will be chosen automatically based on the task type and model selected. | integer | 1 | True | |
auto_find_batch_size | Flag to enable auto finding of batch size. If the provided 'per_device_train_batch_size' goes into Out Of Memory (OOM) enabling auto_find_batch_size will find the correct batch size by iteratively reducing 'per_device_train_batch_size' by a factor of 2 till the OOM is fixed. | boolean | False | True |
learning rate and learning rate scheduler
Name | Description | Type | Default | Optional | Enum |
---|---|---|---|---|---|
learning_rate | Start learning rate. Defaults to linear scheduler. If left empty, will be chosen automatically based on the task type and model selected. | number | 0.0001 | True | |
learning_rate_scheduler | The scheduler type to use. If left empty, will be chosen automatically based on the task type and model selected. | string | True | ['warmup_linear', 'warmup_cosine', 'warmup_cosine_with_restarts', 'warmup_polynomial', 'constant', 'warmup_constant'] | |
warmup_steps | Number of steps used for a linear warmup from 0 to learning_rate. If left empty, will be chosen automatically based on the task type and model selected. | integer | 5 | True |
optimizer
Name | Description | Type | Default | Optional | Enum |
---|---|---|---|---|---|
optimizer | optimizer to be used while training. If left empty, will be chosen automatically based on the task type and model selected. | string | sgd | True | ['adamw_hf', 'adamw', 'sgd', 'adafactor', 'adagrad'] |
weight_decay | The weight decay to apply (if not zero) to all layers except all bias and LayerNorm weights in Adam, AdamW & SGD optimizer. If left empty, will be chosen automatically based on the task type and model selected. | number | 0.0 | True | |
extra_optim_args | Optional additional arguments that are supplied to SGD Optimizer. The arguments should be semi-colon separated key value pairs and should be enclosed in double quotes. For example, "momentum=0.5; nesterov=True" for sgd. Please make sure to use a valid parameter names for the chosen optimizer. For exact parameter names, please refer https://pytorch.org/docs/1.13/generated/torch.optim.SGD.html#torch.optim.SGD for SGD. Parameters supplied in extra_optim_args will take precedence over the parameter supplied via other arguments such as weight_decay. If weight_decay is provided via "weight_decay" parameter and via extra_optim_args both, values specified in extra_optim_args will be used. | string | True |
gradient accumulation
Name | Description | Type | Default | Optional | Enum |
---|---|---|---|---|---|
gradient_accumulation_step | Number of update steps to accumulate the gradients for, before performing a backward/update pass. If left empty, will be chosen automatically based on the task type and model selected. | integer | 1 | True |
mixed precision training
Name | Description | Type | Default | Optional | Enum |
---|---|---|---|---|---|
precision | Apply mixed precision training. This can reduce memory footprint by performing operations in half-precision. | string | 32 | True | ['32', '16'] |
metric thresholds
Name | Description | Type | Default | Optional | Enum |
---|---|---|---|---|---|
iou_threshold | IOU threshold used during inference in non-maximum suppression post processing. | number | True | ||
box_score_threshold | During inference, only return proposals with a score greater than box_score_threshold . The score is the multiplication of the objectness score and classification probability. |
number | True |
random seed
Name | Description | Type | Default | Optional | Enum |
---|---|---|---|---|---|
random_seed | Random seed that will be set at the beginning of training. | integer | 42 | True |
evaluation strategy parameters
Name | Description | Type | Default | Optional | Enum |
---|---|---|---|---|---|
evaluation_strategy | The evaluation strategy to adopt during training. Please note that the save_strategy and evaluation_strategy should match. | string | epoch | True | ['epoch', 'steps'] |
evaluation_steps | Number of update steps between two evals if evaluation_strategy='steps'. Please note that the saving steps should be a multiple of the evaluation steps. | integer | 500 | True |
logging strategy parameters
Name | Description | Type | Default | Optional | Enum |
---|---|---|---|---|---|
logging_strategy | The logging strategy to adopt during training. | string | epoch | True | ['epoch', 'steps'] |
logging_steps | Number of update steps between two logs if logging_strategy='steps'. | integer | 500 | True |
Save strategy
Name | Description | Type | Default | Optional | Enum |
---|---|---|---|---|---|
save_strategy | The checkpoint save strategy to adopt during training. Please note that the save_strategy and evaluation_strategy should match. | string | epoch | True | ['epoch', 'steps'] |
save_steps | Number of updates steps before two checkpoint saves if save_strategy="steps". Please note that the saving steps should be a multiple of the evaluation steps. | integer | 500 | True |
model checkpointing limit
Name | Description | Type | Default | Optional | Enum |
---|---|---|---|---|---|
save_total_limit | If a value is passed, will limit the total amount of checkpoints. Deletes the older checkpoints in output_dir. If the value is -1 saves all checkpoints". | integer | 5 | True |
Early Stopping Parameters
Name | Description | Type | Default | Optional | Enum |
---|---|---|---|---|---|
early_stopping | Enable early stopping. | boolean | False | True | |
early_stopping_patience | Stop training when the specified metric worsens for early_stopping_patience evaluation calls. | integer | 1 | True |
Grad Norm
Name | Description | Type | Default | Optional | Enum |
---|---|---|---|---|---|
max_grad_norm | Maximum gradient norm (for gradient clipping). If left empty, will be chosen automatically based on the task type and model selected. | number | True |
resume from the input model
Name | Description | Type | Default | Optional | Enum |
---|---|---|---|---|---|
resume_from_checkpoint | Loads optimizer, Scheduler and Trainer state for finetuning if true. | boolean | False | True | |
save_as_mlflow_model | Save as mlflow model with pyfunc as flavour. | boolean | True | True |
########################### Finetuning Component ########################### #
Name | Description | Type |
---|---|---|
mlflow_model_folder | Output dir to save the finetune model as mlflow model. | mlflow_model |
pytorch_model_folder | Output dir to save the finetune model as torch model. | custom_model |